Nanoengineered Electroactive Polymers:

Soft Materials to Solve Hard Challenges in Energy and Health

A/Prof Matthew Griffith

ARC Future Fellow Director – UniSA Microscopy and Microanalysis University of South Australia E: matthew.griffith@unisa.edu.au

....My Career Explained By **Beautiful Babies...**

Sophie

A/Prof Matthew Griffith University of South Australia E: matthew.griffith@unisa.edu.au

Beatrice

...My Career Explained By Beautiful Babies...

Sophie

Beatrice

A/Prof Matthew Griffith University of South Australia E: matthew.griffith@unisa.edu.au

...My Career Explained By Beautiful Babies...

Sophie

Beatrice

A/Prof Matthew Griffith University of South Australia E: matthew.griffith@unisa.edu.au

How do You Have Transformational Impact in Science?

"What I want to talk about is the problem of manipulating and controlling things on a small scale."

- Making tiny letters and shapes with atoms
- Building molecular machines ("swallow the doctor")
- Shrinking the computer to the size of your hand
- Building better microscopes to see atoms
- Visualising biological materials like DNA

Ion traps (*Nobel Prize 1989*) Atom Traps (*Nobel Prize 1997*)

Graphene (*Nobel Prize 2016*) Molecules that move (*Nobel Prize 2016*)

There's plenty of room at the bottom.

Richard P. Feynman -

AZOUOTES

Integrated Circuit (*Nobel Prize 2000*) Quantum information (*Nobel Prize 2022*)

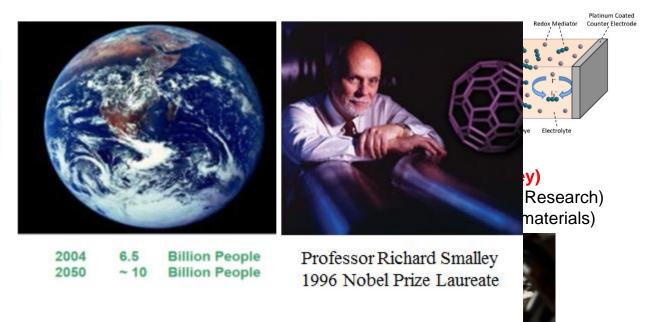
S-T Microscope (*Nobel Prize 1986*) Super-res microscopy (*Nobel Prize 2014*)

Cryo-TE Microscope (*Nobel Prize 2017*) Sequencing genomes (*Nobel Prize 2022*)

University of South Australia

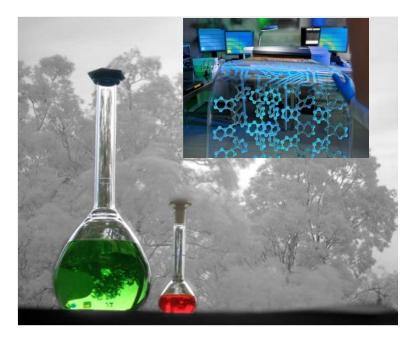
My Journey

2008 – 2012 (University of Wollongong) PhD


istry

Humanity's Top Ten Problems for next 50 years

- ENERGY
- WATER 2
- 3 FOOD
- ENVIRONMENT
- POVERTY 5
- 6. TERRORISM & WAR
- 7. DISEASE



EDUCATION 8 DEMOCRACY 9 10. POPULATION

Semiconducting Polymers for Energy and Health

Carbon-based semiconducting materials for electronic devices: •

University of

South Australia

M. J. Griffith *et. al.*:

Nanotechnology, 2020, 9, 092002

- **Electroactive inks** (we control the **functionality**)
- **Printable** and **flexible** (we make it **light** and **cheap**)
 - Soft and carbon-based

(we can make it **highly biocompatible**)

Low cost R2R printing manufacture of functional electronic devices Page 7

Centre for Nanoelectronic Materials & Devices

RESEARCH EXPERTISE

Material Morphology

APPLICATIONS IN ENERGY & HEALTH

Printed sensors

Photoxodaais, swatetesplittitging

..... Photocapatition spipized eductrics

Device Fabrication

Chemistry, electronic engineering

Chemistry, materials engineers

Radiation detection, radiotherapy

Drug delivery, nanomedicine

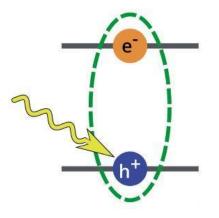
Cell-machine interface studies

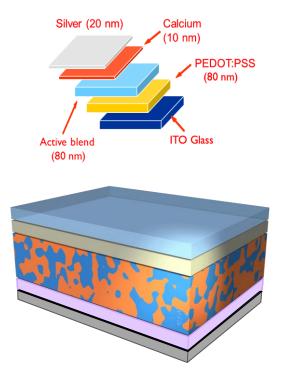
Cell Culture & Recording

Device Characterisation

Biophysics, medicine

Physics


Neuroscience, neural interfacing


The Electronic Challenge: Overcoming Sticky Charges

- Charges are "sticky" in OSCs (excitons)
- Need multiple materials to create free charge
- Need complex nanostructures to maximize interfacial area

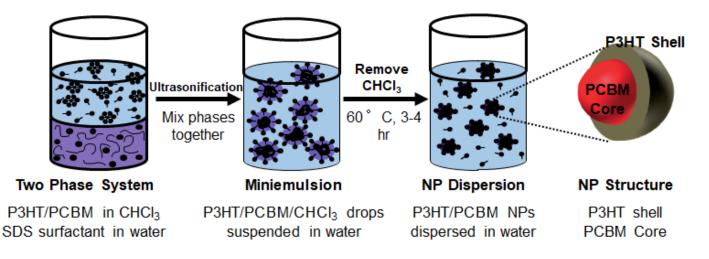
Material 1

Page 9

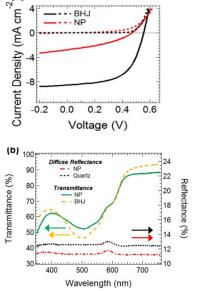
M. J. Griffith, J. A. Posar, S. Cottam, J. Stamenkovic, M. Petasecca, Front. Phys., 2020, 8, 22.

The Chemical Challenge: Organic Toxicity

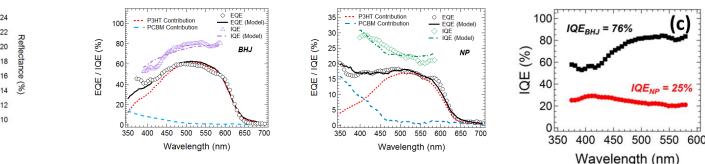
- Organic molecules need organic solvents
- Toxic for humans at scale
- Need materials processed in water



OSC Nanoparticles: New Synthesis Paradigm

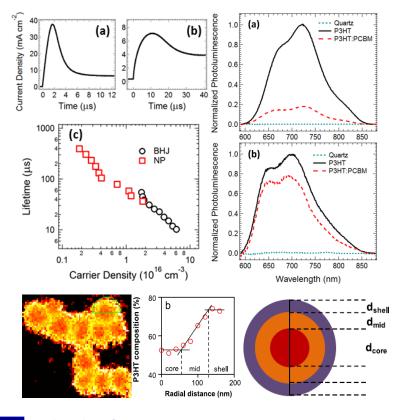

- Create discrete pre-blended D/A nanoparticles
- Water soluble huge fabrication benefit!
- Control nanostructure in synthesis step (not post-treatment)

M. F. Al-Mudhaffer, ..., M. J. Griffith; MRS Commun., 2020, 10, 600-608.


Understanding OSC-NP Energy Devices

- NP-OPV devices do not work as efficiently
- Optical modelling/measurements show no optical differences (scattering, plasmons etc)

Mohammed Al-Mudhaffer



Modelling implies electrical performance (IQE) is poorer in NP systems

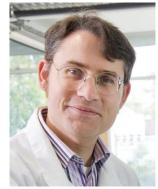
University of South Australia

M.F. Al-Mudhaffer, ..., <u>M. J. Griffith;</u> Sol. Energy Mater. Sol. Cells, 2017, 175, 77-88.

Understanding OSC-NP Energy Devices

- Measure carrier mobility photoCELIV (charge transport) - OK
- Measure carrier lifetime
 Transient photovoltage (TPV)
 (recombination) OK

Dr Mohsen Ameri


- Measure PL quenching of films (charge generation) ORIGIN OF PROBLEM
- Suspect core-shell morphology is root of issue

M. Ameri, ..., <u>M. J. Griffith</u>, ACS Appl. Mater. Interfaces, **2019**, *11*, 10074.

Scaling Up...

Prof. Paul Dastoor

- Acquired R2R coating line and sputter coater
- Print the anode, active layers, required interlayers, then sputter the cathode

University of South Australia

<u>M. J. Griffith</u>, et. al.; Energy Technol., **2015**, 3, 428-436.

Research with a Real World Impact

Designed, printed and constructed a public large area solar demo at PacPrint (Melbourne Exhibition Centre, May 2017)

<u>M. J. Griffith</u>, N.P. Holmes, D.C. Elkington, S. Cottam, J. Stamenkovic, A.L.D. Kilcoyne, T.R. Andersen; Nanotechnology, **2020**, 31, 092002.

Centre for Nanoelectronic Materials & Devices

RESEARCH EXPERTISE

Material Morphology

Device Fabrication

Chemistry, materials engineers

Chemistry, electronic engineering

APPLICATIONS IN ENERGY & HEALTH

Photovoltaics, water splitting

Photocapacitors, piezoelectrics

Printed sensors

Radiation detection, add believapy

Device Characterisation

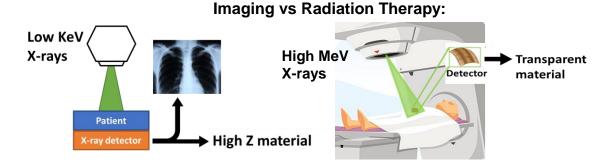
Physics

Drug delivery, nanomedicine

Cell-machine interface studies

Cell Culture & Recording

Biophysics, medicine

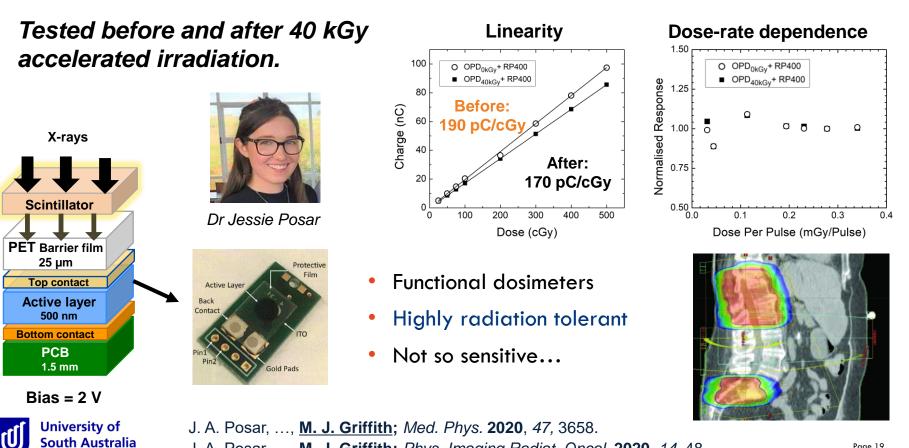

Neuroscience, neural interfacing

Printable X-Ray Sensors for Health

- Ionizing radiation used to image and treat disease.
- 100k radiotherapy treatments in Australia per year.
 - Incident reports in 26% of cases!

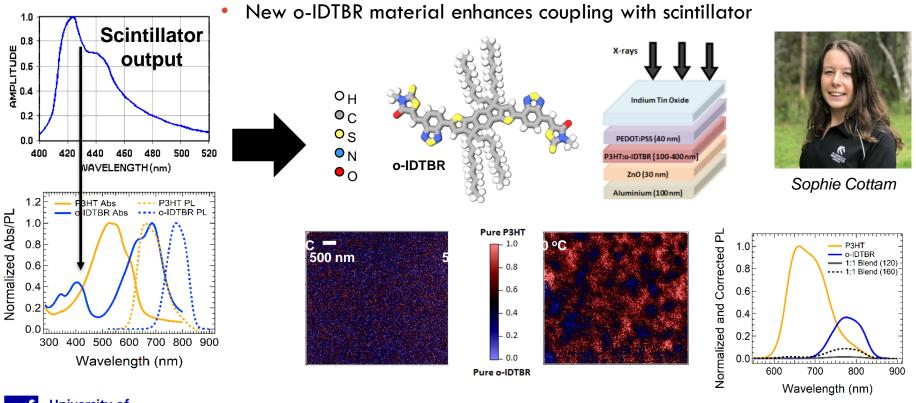
Develop new in-vivo dosimetry for treatment:

- Tissue equivalent
- Transparent to radiation
- Large and flexible active areas
- Radiation tolerant



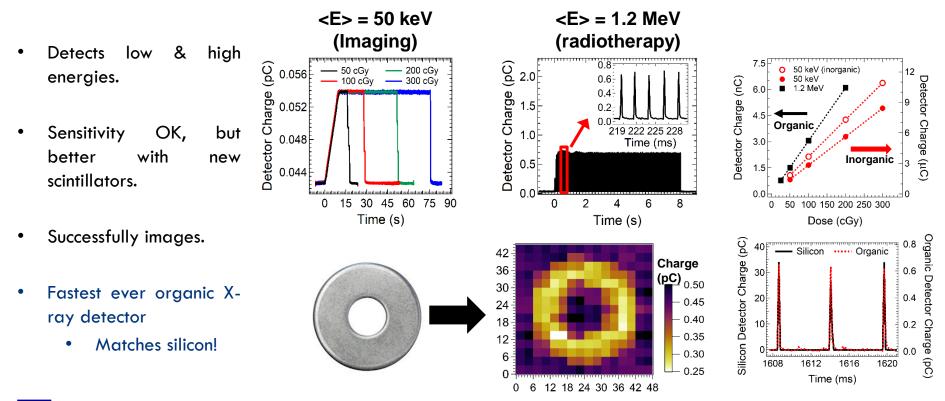
University of South Australia

J. A Posar, ..., <u>M. J. Griffith;</u> Frontiers Physics, 2020, 8, 22.


Testing OSC Devices in Clinical Environment

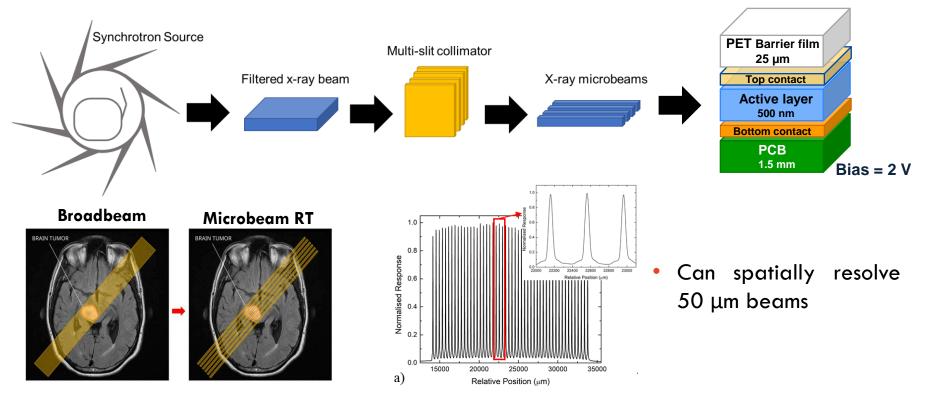
J. A. Posar, ..., M. J. Griffith; Phys. Imaging Radiat. Oncol. 2020, 14, 48.

Page 19


Tailor Materials to Boost Performance

University of South Australia

J. A. Posar, ..., <u>M. J. Griffith;</u> Adv. Mater. Technol., **2021**, *6*, 2001298.


A New Versatile Radiation Dosimeter

University of South Australia

J. A. Posar, ..., <u>M. J. Griffith;</u> Adv. Mater. Technol., 2021, 6, 2001298.

The Clinical Techniques of the Future

J. A. Posar, ..., <u>M. J. Griffith;</u> J. Synchrotron Rad. 2021, 28, 1444.

Centre for Nanoelectronic Materials & Devices

RESEARCH EXPERTISE

Material Morphology

APPLICATIONS IN ENERGY & HEALTH

Printed sensors

Photovoltaics, water splitting

 Photocapacitors, piezoelectrics

Device Fabrication

Chemistry, electronic engineering

Chemistry, materials engineers

Radiation detection, radiotherapy

Drug delivery, naaporedidicine

Cell-machine interface statles

Device Characterisation

Physics

Cell Culture & Recording

Biophysics, medicine

*

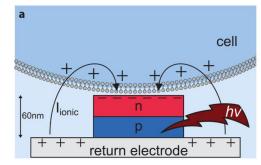
Neuroscience, neevalal niteveatainin g

Page 23

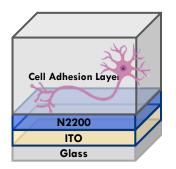
Current Research Motivation

- Bioelectronics discipline at the intersection between physics and living systems.
- Neurons are the primary signal carriers in mammals.
 - Operate via mechanical, chemical & electrical signals
- We aim to develop materials & devices that talk to neurons in a language they understand
 - Treatment of neurological disorders
 - Restoration of sensory function

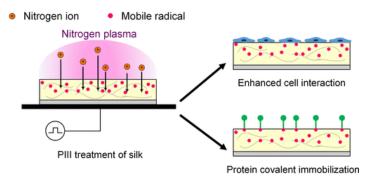
New Materials for Biointerfacing


Solving Cell Adhesion

- Semiconducting polymers are typically hydrophobic and resist adhesion with hydrophilic cells.
- Solution Approach 1: Chemical structure tuning
 - Elegant approach, neuron directly contacts designed surface
 - **<u>BUT</u>** Difficult in bioelectronics as changes the electronic properties
- Solution Approach 1: Create Adhesion Layer
 - Mimics biology (integrin proteins in extracellular matrix)
 - **<u>BUT</u>** Neuronal cell isolated from electronic material by insulator


CHALLENGE: Alter nanoscale interface of material for adhesion without influencing electronic properties

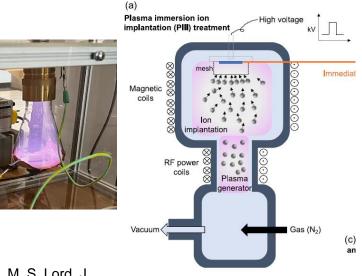
U



D. Rand, M. Jakešová, G. Lubin, I. Vébraité, M. David-Pur, V. Đerek, T. Cramer, N. S. Sariciftci, Y. Hanein, E. D. Głowacki; *Adv. Mater.*, **2018**, *30*, *1707292*.

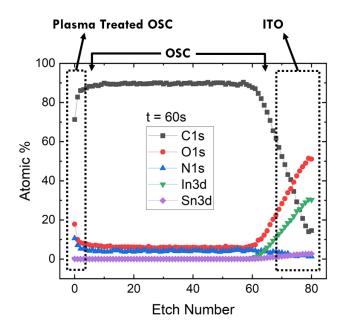
Solution: Precision Plasma Treatment

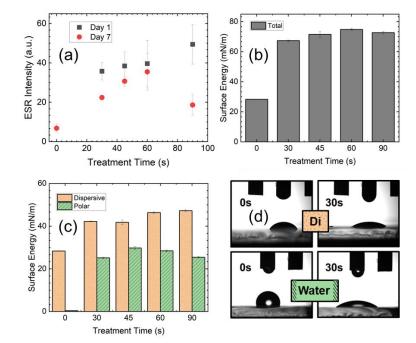
- Plasma ion implantation (PIII) used to selectively change the surface region of polymer.
- Previously shown to modulate silk biomaterials to be more adhesive for cells.
 - What about effects on electronic materials?



Dr Clara Tran

Prof. Marcela Bilek

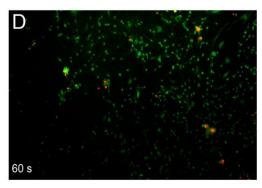


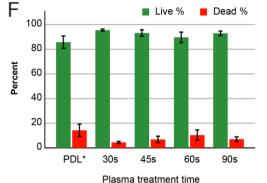


A. Kondyurin, K. Lau, F. Tang, B. Akhavan, W. Chrzanowski, M. S. Lord, J. Rnjak-Kovacina, M. M. Bilek; ACS Appl. Mater Interfaces, **2018**, *10*, 17605.

Effect of Plasma: Polar Surface with Good Electronics

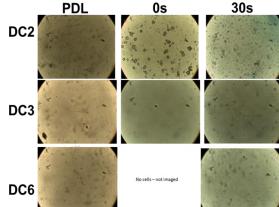
- Plasma turns surface hydrophilic
- Only treats ~10 nm at surface
- Material electronic properties improved

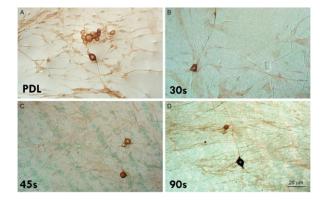

• Significant decrease in contact angle after PIII due to creation of polar contribution to surface energy.

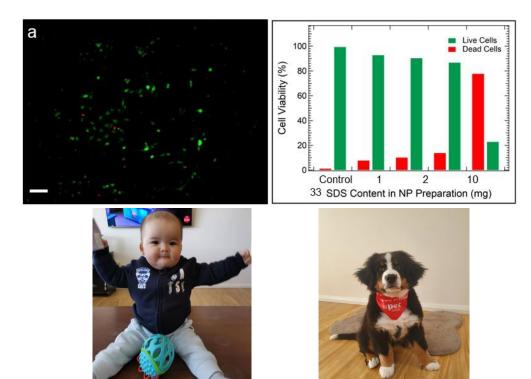

PIII Treatment Helps Cell Adhesion

- Cell Adhesion:
 - Optical images show cells washed off the 0s film during medium exchange
 - Pll treated films similar to PDL control
- Live/Dead Assay
 - No change in live/dead for PIII and poly-D-lysine control

Neurite Cell-Specific Staining

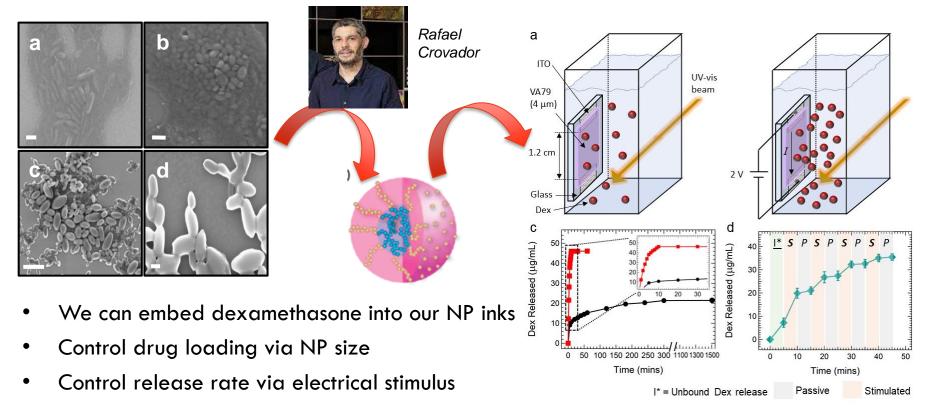

All show evidence of darkly stained DRG neurons (*) with long projections.
 In these examples, projections extended from 40µm to 140µm



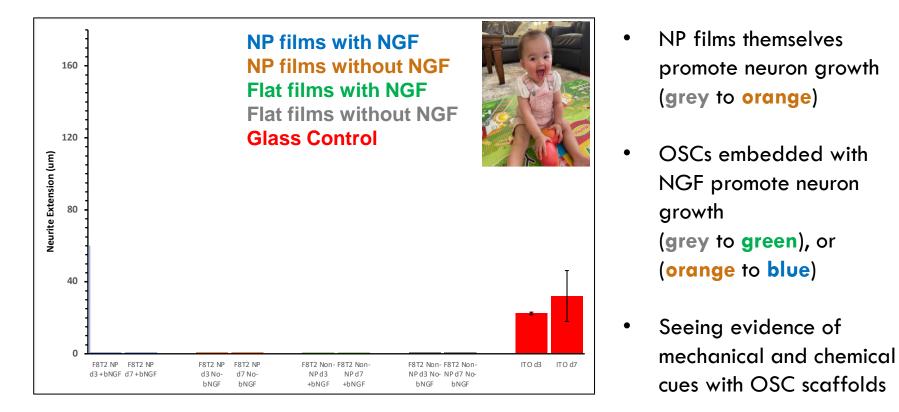


A/Prof Rebecca Lim

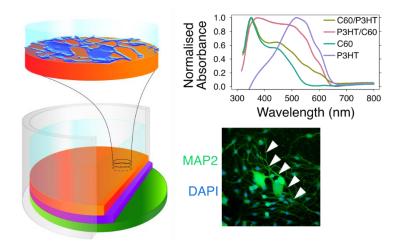
Establishing Organic Semiconductor Biocomptibility



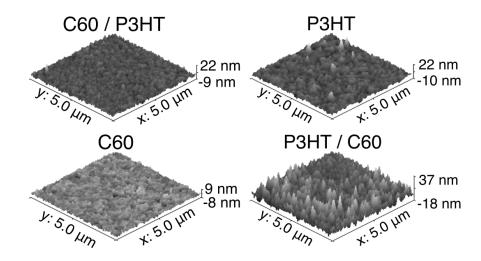
- Perform cell co-culturing with dissociated mice DRGs
- Live/Dead Assays
 - Establish ratio of living cells to dead cells
- Require specific mice neuron stain
- See quite good neurite growth.


R. Crovador, H. Heim, S. Cottam, K. Feron, V. Bhatia, F. Louie, C. P. Sherwood, P.C. Dastoor, A. M. Brichta, R. Lim, <u>M. J. Griffith</u>; ACS Appl. Biomater., **2021**, *4*, 6388-6350.

Embed Anti-inflammatory Drugs into NPs


University of South Australia R. Crovador, H. Heim, S. Cottam, K. Feron, V. Bhatia, F. Louie, C. P. Sherwood, P.C. Dastoor, A. M. Brichta, R. Lim, <u>M. J. Griffith</u>; *ACS Appl. Biomater.*, **2021**, *4*, 6388-6350.

NP inks with NGF Promote Neuron Growth

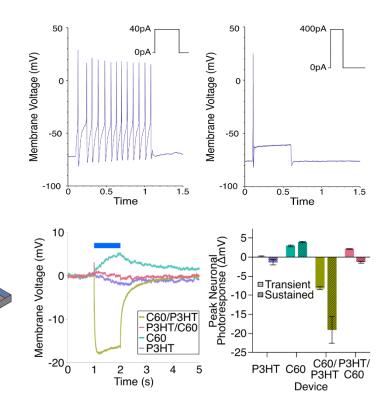


Neural Interfacing with Organic Semiconductors

Neural Interfacing

- Neurons cultured onto mono- and bi-layer devices
- Neurons grow and show high cell viability

Interface Surface Analysis


- Surface roughness comparable for all samples
- Cell viability is due to materials

University of South Australia C. Sherwood, D. C. Elkington, M. R. Dickinson, W. J. Belcher, P. C. Dastoor, K. Feron, A. Brichta, R. Lim, <u>M. J. Griffith</u>; *J. Selected Topics Quant. Electron.*, **2021**, *27*, 1-12.

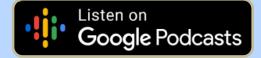
Achieving Optical Neuromodulation

Dr Connor Sherwood

- Neurons cultured onto scaffolds are bioactive
- Change in the neuron membrane with purely photoinduced stimuli
- Polarity of the response is controlled by the device architecture

Vo

C. Sherwood, ..., M. J. Griffith; Adv. Mater. Interfaces, 2023, 10, 2202229.



PODCAST **Chemically Speaking**

Royal Australian Chemical Institute

Subscribe to listen for free on Apple, Google or Spotify Podcasts

The RACI now has an official podcast!

W: www.raci.org.au/chemicallyspeaking

E: chemicallyspeaking@raci.org.au

MATTHEW ROSEMARY YOUNG GRIFFITH Podcast Host Producer

JESSE MULLEN **Content Creator**

VEENA **KFI I FPPAN** Editor

ANDREW CARMICHAEL **Content Creator**

ISABEL **WESTON** Engagement

If you want to keep up with how Australia's chemists are solving the biggest problems facing humanity, then this is the podcast for you!

Acknowledgements

STUDENTS & POSTDOCS

- Dr Connor Sherwood
- Dr Jessie Posar
- Dr Hannah Drury
- Dr Mohsen Ameri
- Rafael Crovador
- Nathan Brichta
- Sophie Cottam
- Mohammed Al-Mudhaffer
- Darcie Anderson

CLINICAL COLLABORATORS

- A/Prof Matthew Simunovic (Sydney Eye Hospital)
- Dr Brendan Tonson (Wollongong Hospital)
- Dr Fiona Louie (Maitland Hospital)

ACADEMIC COLLABORATORS

- Prof Paul Dastoor (UON; organic materials)
- A/Prof Rebecca Lim, Prof Alan Brichta (UON; neuron culturing)
- Dr Clara Tran, Prof. Marcela Bilek (USyd; plasma treatment)
- Prof Julie Cairney, Dr Vijay Bhatia (USyd; microscopy)
- Prof Anita Ho Baillie, A/Prof Girish Lakhwani (USyd; optoelectronics)
- Prof Attila Mozer, A/Prof Marco Petasecca (UOW; device physics)

HEP

- Prof Paul Sellin (Surrey University; optoelectronics)
- Prof Beatrice Fraboni (Bologna University; biomaterials)
- Shogo Mori, Ryuzi Katoh (Shinshu University and NIST, Japan)

National Health and Medical Research Council

Australian Government Australian Research Council

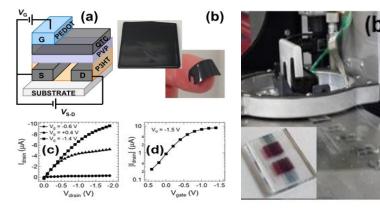
Mining Services

FUNDING

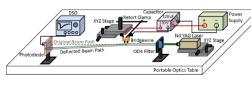
Connect With Us

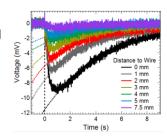
Centre for Nanoelectronic Materials and Devices

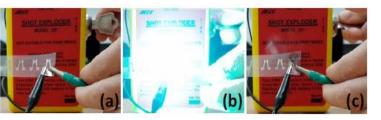
A/Prof Matthew Griffith


+61 8 8302 3543 matthew.griffith@unisa.edu.au https://people.unisa.edu.au/Matthew.Griffith

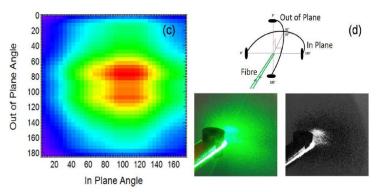
in f У 🧿

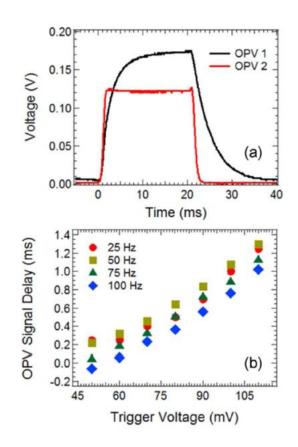



Working With Industry



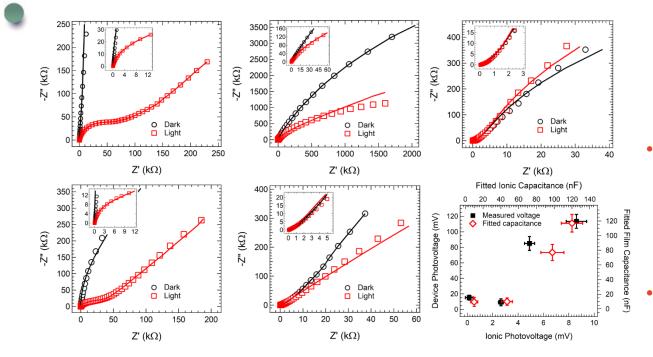
- Industry funded project leader
- □ Create printed light, pressure and plasma sensors
- Detect underground to detonate explosives
- □ Safe, secure, remotely programmable
- Cheap and disposable (but not publishable!)
- **Learn to identify and solve real world problems**

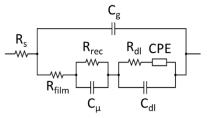




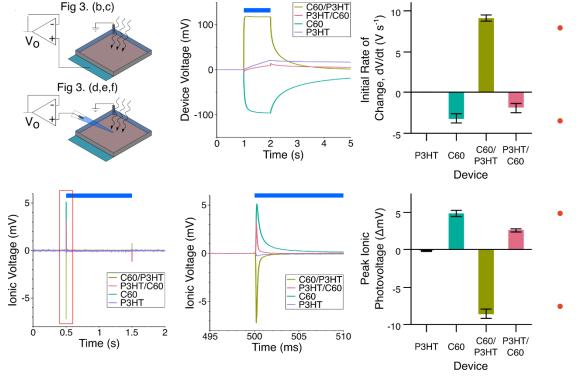
Printed Photonics Sensors for Mining

- Designed system to detect light from optic fibre with printed OPV
- Leak light from fibre bend —
- Use two light sensors and different response for timing


University of


South Australia

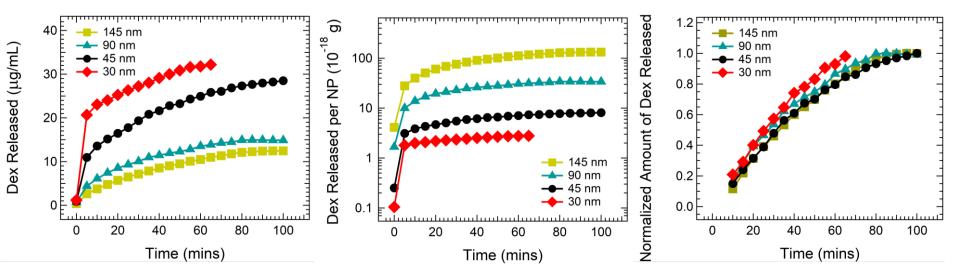
M.J. Griffith, et. al.; ACS Appl. Mater. Interfaces, 2016, 8, 7928.


Impedance Characterisation of Interfaces

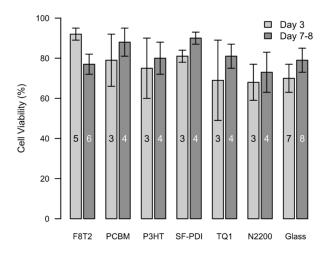
- EIS measurements showed surface charge changes correlated to ionic interface capacitance
- Quantitative match to previous measurements

Generate Photocharge at Biointerface

University of

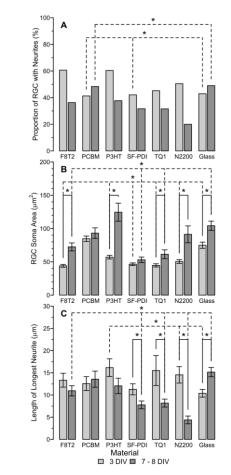

South Australia

- Surface charge induced by 470
 nm light
- Polarity of surface charge inverts when layer structure inverted
- lonic charge in the electrolyte inversely correlated to surface.


Coupling is photocapacitive

[4]. C. Sherwood, D. C. Elkington, M. R. Dickinson, W. J. Belcher, P. C. Dastoor, K. Feron, A. Brichta, R. Lim, M. J. Griffith; *J. Selected Topics Quant. Electron.*, **2021**, *27*, 1-12.

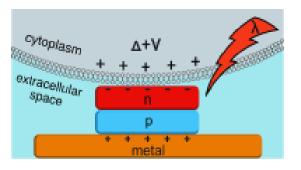
Drug Release From Polymer NPs: Size vs Kinetics

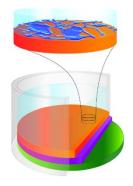

Human Biocompatibility

Live/Dead Assays show very promising biocompatibility

University of

South Australia


Functional data shows cell attach, neurite growth limited


Need to be **very** careful to assess with right **cell culture** and right **assessment technique**

[3]. C. Sherwood, R. Crovador, ..., <u>M. J. Griffith</u>; *Adv. Mater. Inter.* **2023**, 2202229.

Spatial/Spectral Selectivity via Light

- We have shown that:
- 1. Neurons grow onto all our printed ink formulations
- 2. We can stimulate neuron membrane potentials using different coloured illumination of our semiconducting inks.

