Analyzing & Testing

New Software for Thermal Simulation of Curing Reactions in Large Volumes

E. Moukhina, <u>A. Gillen</u>, I. Issaev, 38APS, Auckland, 20 February 2024

The NETZSCH Group

And its globally acting business units

Erich NETZSCH GmbH & Co. Holding KG

Analyzing & Testing

Thermal analysis instruments and instruments for the determination of thermophysical properties as well as Fire Testing and Rheology

Grinding & Dispersing

Comprehensive machine program for wet and dry grinding as well as mixing, dispersing, homogenizing and classifying

Pumps & Systems

Always the right positive displacement pump for your application

Products and Services for Applications in the Low- and High-Temperature Range from -260°C up to 2800°C

- 1. Background
- 2. Thermal Simulation of Large Volumes
- 3. Input Data for Thermal Simulations
- 4. Application Example Epoxy curing
- 5. Summary

1 Background

- Curing refers to an irreversible chemical process that transforms a material from a soft, pliable state to a rigid, stable one.
- This transformation usually involves the **formation of cross-links** between the individual molecules or chains within the material.
- Curing is an **exothermic process** and is typically seen in thermosets (epoxies, polyesters, silicones), elastomers, paints and coatings, adhesives etc.

Source: https://uspackagingandwrapping.com

- In product manufacturing the industrial processes must be designed with utmost care to reduce scrap production, processing defects and catastrophic failures.
- Incorrect curing cycles can lead to overheating
 and subsequent product defects including:
 - Cracking and warping
 - Bubble voids
 - Optical properties
 - Loss of mechanical properties
- Technology leaders in thermoset component manufacturing use experimental and computational methods to risk minimise their manufacturing processes

Source: https://journals.sagepub.com/doi/pdf/10.1177/00219983211002247

DSC Method A commonly used technique for checking degree of cure

Step 1 – Check Conversion of CFRP Prepreg (12 hour cycle)

A DSC measurement alone is not enough for optimisation of a cure cycle

- 1) "Kinetics": the study of chemical processes and reaction rates to understand the influences that affect the reaction mechanisms.
- 2) Curing is generally a diffusion controlled reaction after gel point point mobililty of molecules decreases and results in lower reaction rates
- 3) Mathematical models fit real measurement data to further describe and predict the reaction

$$\frac{d\alpha}{dt} = A(\alpha)exp\left(\frac{-E_a(\alpha)}{RT}\right) \quad f(\alpha)$$

conversion rate

reaction model

Arrhenius equation: temperature dependency of the reaction rate

 α : conversion

A: pre-exponential factor (likelihood-factor for molecular collisions)

- E_a : activation energy
- T: temperature
- R: ideal gas constant

NETZSEH

KINETICS The Most Comprehensive Commercial Kinetic Program

Application Example: Optimising the Cure Cycle of a CFRP Bike Wheel

Kinetic Analysis does not consider the temperature gradients in the reacting volume

2 Thermal Simulation of Large Volumes

Why Kinetic Analysis is not enough?

-0.1

-0.3

-0,5 5ш/Лш

C/ 25-0,9

-1.1

-1.3

-1.5

0

27.8

24.1

16

Why a new software was needed?

Existing FEM solutions:

- 1. Existing software works with complex geometry but with simple chemical processes
- 2. Problems with transfer of kinetic parameters from kinetic software to simulation software
- 3. Some processes have complex mathematical description and can not be transferred to simulation software

New Thermal Simulation software:

- 1. Simple geometry, but complex processes
- 2. Automatic loading of kinetic parameters and equations from NETZSCH Kinetics Neo
- 3. No limitation for complexity of the chemical system

Our Complete Solution for Simulating Reactions in Large Volumes

1. Laboratory measurements (mg)

Laboratory Instrument: DSC / DIL / Rheometer ...

New Software for Thermal Simulation of Curing Reactions in Large Volumes

EZSCH

Heat balance for small element with reaction heat as the heat source

Data for simulations

Thermosets, Composites Curing, Cross-linking DSC Heat flow fast heating Heating slow heating Temperature

Features:

- Temperature range: -170°C ... 600°C
- Heating/cooling rates: 0.001K/min ... 500 K/min
- Automatic sample changer: 20 samples (optional)

Additional instruments: Other calorimetric instruments

Physical data for simulation: reacting media and containers

Define Surrounding Materials and Temperature Profiles

NETZSCH

Application Example: Epoxy curing

NETZSCH

Simulation Setup in Termica Neo Software

New Software for Thermal Simulation of Curing Reactions in Large Volumes

NETZSCH

Simulation Results for Cylinder (2D Heatmap and Conversion Plot)

Output from Termica Neo

Simulation Results for Cylinder (3D Heatmap and 2D Conversion Plot)

Horizontal Section (z=50%)

123

122.1

111.2

- 100.3

- 99.4

78.5

67.6

56.7

45.8

34.9

24

Temperature vs Time

Conversion vs Time

Output from Termica Neo

Possible to show: Temperature, conversion, conversion rate vs time

Applicability of Termica Neo to Large Volumes

- Curing, crystallisation, denaturation (DSC, Rheometry)
 eg. polymers, paints, adhesive, inks, resins, food
- Firing processes (DIL)

eg. tiles, bricks, porcelainware, powder metallurgy

- Decomposition processes (TGA) eg. debindering, pyrolysis
- Chemical Industry (ARC, HFC)

eg. storage of high energetic materials (eg. SADT)

Availability of Termica Neo

- Standalone software package (free 30 day trial available)
- Consulting service (complete solution including optimisation)

You can rely on NETZSCH.

Thank you for your attention!

Andrew Gillen Head of ANZ Region NETZSCH Analyzing and Testing

NETZSCH Australia Pty Ltd 9/10 Anella Ave Castle Hill NSW 2154 AUSTRALIA

E: <u>Andrew.Gillen@netzsch.com</u> T: +61 2 9641 2846

learn more at: termica.netzsch.com