

MODULAR, TARGETED POLYMERIC-PRODRUGS FOR THE TREATMENT OF INFECTIOUS DISEASES

AYUMI POTTENGER PHD CANDIDATE, MOLECULAR ENGINEERING BIOENGINEERING DEPARTMENT, UNIVERSITY OF WASHINGTON

MALARIA: CLINICAL SETTING

ESTIMATED 249 MILLION CASES OF MALARIA AND 608,000 DEATHS IN 2022¹

- High morbidity, mortality, & socioeconomic burden
- May cause: anemia, jaundice, organ failure, cerebral malaria, intellectual disabilities, coma, death
- *Plasmodium vivax* malaria:
 - o Geographically widespread
 - Infection can result in dormant liverstage parasites called hypnozoites

Photo courtesy of Gates Foundation

HYPNOZOITE REACTIVATION CAN CAUSE RECURRENT EPISODES OF MALARIA

STANDARD OF CARE

- Elimination of blood & liver stage parasites = 'radical cure'
- Primaquine (PQ)- treatment for hypnozoites
 O Daily dose for 14 days → reduced patient compliance
- Tafenoquine (TQ)- FDA-approved in 2018
 O Indicated for 'radical cure' of P. vivax

O Single dose therapeutically equivalent to 14 daily doses of PQ
 EXTENDED HALF-LIFE ANI

EXTENDED HALF-LIFE AND ABILITY TO ACHIEVE Radical cure with a single dose make to a Promising treatment in resource-poor settings

UNMET NEED: GLUCOSE-6-PHOSPHATE DEHYDROGENASE (G6PD) DEFICIENCY

- G6PD deficiency affects 400 million people worldwide
- Common in the malaria belt
- PQ and TQ elicit hemolytic anemia in G6PDdeficient patients

Photo from Tori Avey

• Testing needed when TQ treatment is indicated

G6PD DEFICIENCY TESTING IS NOT ACCESSIBLE IN Resource-poor regions where malaria is Most prevalent

POLYMER DESIGN

Prodrug Monomer

- Valine + citrulline + PABC spacer (VC linker) cleaved by cathepsin
- VC linker is clinically validated in ADCs
- TQ payload not bioavailable until linker is cleaved

GalNAc Monomer

Targeting moiety

- Asialoglycoprotein receptor (ASGPR) highly expressed in hepatocytes
- GalNAc is clinically validated for liver targeting
- Increases water solubility of polymer

Srinivasan et al., J Control Release. (2020) 331:213-227

POLYMER DESIGN, CONTINUED

PROJECT MOTIVATIONS

- Presence of G6PD deficiency undermines use of TQ for eradication campaigns
- Targeted polymeric prodrugs provide an avenue to treat hypnozoites while reducing bioavailable TQ concentrations in circulation

Made with Biorender

PHARMACOKINETICS OF TQ-BASED POLYMER

PHARMACOKINETICS OF TQ-BASED POLYMER

- •VCTQ polymer and oral TQ had similar TQ [C] in liver
- •VCTQ polymer had reduced TQ [C] in plasma
- •Carboxylesterase in mouse blood \rightarrow early peak of TQ in plasma

IMPROVING PK PROPERTIES OF TQ VIA LINKER MODIFICATION

Valine-citrulline dipeptide

Polymers	[M]:[CTA:[I]	Monomer Conversion	Theoretical DP of Monomers	MW (Mn, g/mol)	Đ	Drug (weight %)	
pVCTQ	38:1:0.13	87%	VCTQ-MA (4) GalNAc-MA (29)	14,000	1.1	14	
pSVCTQ	39:1:0.14	84%	SVCTQ-MA (4) GalNAc-MA (29)	13,700	1.1	15	

SVCTQ ELIMINATES BURST RELEASE IN IV ROA

- sVCTQ polymer had no early release in plasma
- sVCTQ still resulted in high liver [c]

SVCTQ IMPROVES LIVER EXPOSURE IN SC ROA

- sVCTQ resulted in high [TQ] in the liver, better TQ bioavailability
- Low TQ release in plasma

BIODISTRIBUTION AND LIVER HISTOLOGY

Tissue collected at 8h following SC 10 mg/kg dose of rhodamine-labeled sVCTQ IVIS imaging (left) and fluorescent microscopy (right)

Liver histology: DAPI nuclei (blue), Alexa 488 Phalloidin cell membrane (green), rhodamine-labeled pSVCTQ (red)

Image taken by Dr. Duy Khiet Ho

HEMOTOXICITY OF DRUGAMERS IN A HUMANIZED G6PD-DEFICIENT MOUSE MODEL

- Collaboration with University of Colorado Anschutz School of Medicine
- Hemotoxic effect of drugamer on NOD/SCID mice grafted with human G6PD-deficient blood

HEMOTOXICITY OF DRUGAMERS IN A HUMANIZED G6PD-DEFICIENT Mouse Model

EFFICACY OF DRUGAMERS IN *P. BERGHEF* INFECTED MICE

- Collaboration with Walter Reed Army Institute of Research
- Efficacy of polymer on *P. berghei* parasites

EFFICACY OF DRUGAMERS IN *P. BERGHEF* INFECTED MICE

- Collaboration with Walter Reed Army Institute of Research
- Efficacy of polymer on *Plasmodium berghei* parasites

EFFICACY OF DRUGAMERS IN *P. BERGHEF* INFECTED MICE

- 'Stable' VCTQ linker design:
- Produced best bioavailability in liver with reduced blood exposure
- Twice as active in WRAIR P. berghei model
- >2-fold reduction of toxicity in hemolytic anemia model
- Additional polymer designs can be used to tune drug release, reduce plasma exposure, and improve circulation of polymer

FUTURE DIRECTIONS

- Pulmonary infection applications
- Go to Dr. Patrick
 Stayton's talk on Tuesday at 3:55pm to hear more about drugamers!

Thank you! Acknowledgements

Stayton Lab: Dr. Patrick Stayton Dr. Debashish Roy Dr. Sarah Snyder Dr. Takuma Yoshikawa Dr. Simba Jakonya Dr. Sreekanth Kokkonda Dr. Naomi Hamelmann Dr. Ciana Lopez Ben Nguyen **Patrick Gerber** Minyi You Marianne Esnaurrizar Sarah Lemmon

Gates Malaria Team: Susan Hershenson Dr. Hans Huber Dr. Rosemary Rochford Dr. David Wesche Dr. Paul Burke Ellen Harrington **Former Staytonites:** Dr. Selvi Srinivasan Dr. Vladimir Vlaskin Dr. Thomas Chavas Dr. Duy-Khiet Ho Dr. ABM Zakaria Vincent Livingston **Osvaldo** Arias

Pulmonary Infection Collaboration: Dr. Shawn Skerrett Dr. Eoin West Dr. Deborah Fuller Dr. Hannah Frizzell Guilhem Rerole

BILL#MELINDA GATES (oundation

Citations:

- World Health Organization. Geneva. World Malaria Report. 2023. vol. Licence:CC BY-NC-SA 3.0 IGO.
- S. Srinivasan, D. Roy, T. E. J. Chavas, V. Vlaskin, D. K. Ho, A. Pottenger, C. L. M. LeGuyader, M. Maktabi, P. Strauch, C. Jackson, S. M. Flaherty, H. Lin, J. Zhang, B. Pybus, Q. Li, H. E. Huber, P. A. Burke, D. Wesche, R. Rochford, P. S. Stayton, Liver-targeted polymeric prodrugs of 8-aminoquinolines for malaria radical cure. J Control Release 331, 213–227 (2020).

Backup Slides

VCTQ and SVCTQ Synthesis Information

		Monomer	mer Theoretical DP of MW (Mn,			Drug
Polymers	[M]:[CTA]:[I]	Conversion	Monomers	g/mol) ^a Đ ^b		(weight %)
			VCTQ-MA(4)			
pVCTQ	38:1:0.13	87%	GalNAc-MA (29)	14,000	1.1	14%
			SVCTQ-MA(4)			
pSVCTQ	39:1:0.14	84%	GalNAc-MA (29)	13,700	1.1	15%

^a Calculated by NMR spectroscopy based on monomer conversion and targeted DP; ^b determined by organic and aqueous SEC.

Representative GPC trace of p(GalNAcMA-co-SVCTQMA) in LiBr-supplemented (0.1% w/v) DMF mobile phase at a flow rate of 1 mLmin-1

SVCTQ Pharmacokinetic Summary

Drug Sample	Dose (mg/kg)	RoA	Tissue	AUC (µg/g Liver*h) or (µg/mL Plasma*h)	AUC SD%	C _{max} (μg/g Liver) or (μg/mL Plasma)	<u>C</u> max SD%	Tmax (hour)	Liver AUC /Plasma AUC
pVCTQ	25	IV	Liver	2725	7	48	5	8	120
			Plasma	22.62	16	0.88	22	2	
pSVCTQ	25	25 IV	Liver	2550	15	57	29	8	164
			Plasma	15.53	10	0.20	18	2	
pSVCTQ	10	SC	Liver	2422	13	25	13	8	252
			Plasma	9.617	8	0.10	2	24	
Parent TQ	10	.0 OG	Liver	1404	20	17	23	8	(2.8
			Plasma	22.35	14	0.38	12	8	02.8

Anti-hypnozoite Assay

