

Nano-engineering of aqueous polymer latex particles for film formation applications using multiblock copolymers

S. Ahmad Ayati Najafabadi, Steven W. Thompson, and Per B. Zetterlund

Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.

38th APS Auckland, New Zealand February 2024

Background: Multiblock copolymer latex particle film formation

Aguirre *et al.* M. Polymer Colloids: Current Challenges, Emerging Applications, and New Developments. *Macromolecules* **2023**, *56* (7), 2579-2607. Brito, E.L. and N. Ballard, Film formation of hard-core/soft-shell latex particles. Journal of Polymer Science, **2023**. 61(5): p. 410-421.

Background: Multiblock copolymer synthesis via RAFT polymerization

ADVANTAGES << Compartmentalization >>

- High degree of livingness
- Fast polymerization rate
- Applicable to low *k*p monomers
- Environmentally friendly (water as media)

APPLICATIONS

- Nanomedicine
- Materials science
- Latexes films
- Many more

Multiblock copolymer films and mechanical properties

Thompson S.W. et al. Macromolecules, 2023. 56(23): p. 9711-9724.

1.5

90 nm

132 nm

Nanoreactor concept: Multiblock copolymers by RAFT emulsion polymerization

<< Compartmentalization >>

- ✤ High polymerization rate
- ✤ Low initiator-derived radical concentration
- \clubsuit Low k_p monomers

Methodology: Synthesis of amphiphilic macroRAFT agent

MacroRAFT optimization

Effect of hydrophobic chain length

Log M (g mol⁻¹)

Seed latex synthesis (nanoreactors): RAFT emulsion polymerization

PBA seed DP=200

Seed *D* vs macroRAFT hydrophobic block DP

MacroRAFT optimization

Effect of hydrophilic chain length

Seed latex synthesis (nanoreactors): RAFT emulsion polymerization N PBA seed DP=200 °C₁₂H₂₅ HO 01 OH Seed *D* vs macroRAFT hydrophobic block DP 1.6 1.5 1.4 1.3 • Æ 1.2 • 1.1 1 80 100 20 40 60 120 0 Hydrophilic Block DP

High viscosity by increasing the hydrophobic DP

Styrene hexablock copolymer latex particle films

UNSW

Styrene hexablock copolymer latex particle films

Poor mechanical properties by increasing the styrene block numbers

Future work Sequential copolymerization **Microphase separation** Ν 111 0 $C_{12}H_{25}$ HO 200 II S /₂₀₀ /₆₀₀ 0 07 n **OH** 0 Ν III C 0 S $C_{12}H_{25}$ НО 300 II S /200 /200 300 Ο 0~ Ο О OH O

13 UNSV

Acknowledgments

Prof. Per B. Zetterlund

Dr. Steven W. Thompson

UNSW Mark Wainwright Analytical Centre

