

A Self-Healing Acrylic Coating based on Hydrogen Bonding

Maximilian Beach February 2024

Self-Healing in Materials Science

"Self-healing technology can repair damage spontaneously and without intervention or diagnosis"

Applications: Biomedicine, Infrastructure, Aerospace engineering, Energy, Automotive engineering, *Coatings*, and many other materials

Coatings:

- Acrylic (paints)
- Epoxy resins
- Anticorrosive coatings
- Industrial and other

Microcapsules

Poor optical qualities

Synthetically complex

Requires catalysts

Can only heal once

Covalent bonds

Forms strong bonds

Requires high temperatures

Repeatable Healing

Supramolecular bonds

Room temperature self-healing

Synthetically accessible

Repeatable healing

Mechanically weak material

Hydrogen bonding

Benefits

- Ambient self-healing
- Versatile
- Synthetically simple
- Tunable

2-Ureido-4[1H]-Pyrimidinone (UPy)

- Self-complementary
- Extremely strong

UPy-Monomer: Theory

THE UNIVERSITY OF MELBOURNE

UPy-Monomer: Optical Self-Healing

CONTROL

UPy-3

UPy-2

UPy-2, 50°C

UPy-Monomer: Strain Recovery

Conclusion

UPy monomers were synthesized and incorporated into an acrylic latex

An acrylic coating was formed which was able to self-heal at room temperature

- 1: Hydrogels
- 2: Elastomers
- 3: Thermoplastics
- 4: Epoxy resins
- 5: Multiphasic materials
- 6: Specialized thermosets
- 7: Other acrylic coatings

Acknowledgements

A/Prof. Georgina Such

Dr Tim Davey

1. A self-healing waterborne acrylic latex coating based on intrinsic hydrogen bonding, Progress in Organic Coatings, 188 (**2024**) 108189.