Mixed Ion-Electron-Solvent Transfer in Radical-containing Polymers

Jodie L. Lutkenhaus, Daniel Tabor, Emily Pentzer Texas A&M University

Today's Li-ion batteries

<u>Cathode</u> LiCoO₂ (LCO) LiNi_xMn_yCo_zO₂ (NMC) LiFePO₄ (LFP)

Key elements: Li, Co, Ni

<u>Electrolyte</u> LiPF₆ Cyclic and linear carbonates

Cobalt and Nickel Shortages are Predicted by 2035 and 2045, Respectively

"...the long-term LIB price will be dominated by cost of the cathode materials."

Human Rights Abuses and Political Friction Over Cobalt

Carmakers Race to Control Next-Generation Battery Technology

The prize: batteries that would be cheaper, faster to charge and less vulnerable to raw material shortages. Whoever gets there first will have a major advantage.

"Many automakers are eager to reduce their reliance on cobalt in part because it mostly comes from the Democratic Republic of Congo, where it is mined by Chinese-financed companies or by freelancers who sometimes employ children.

Li-ion Battery Recycling

 Recycling promises to recover valuable critical materials

- But at what cost?
 - High energy requirements
 - Harsh chemicals
- Is lithium-ion battery recycling better or worse for the environment?

Bai et al. Materials Today 2020, 40, 304-315

https://www.anl.gov/article/doe-launches-its-first-lithiumion-battery-recycling-rd-center-recell

Mining and Manufacturing for Li-Ion Batteries Generates CO₂

Easley, A. D.; Ma, T.; Lutkenhaus, J. L., Joule 2022, 6 (8), 1743-1749.

The Battery of the Future Will:

- Contain materials that are easily (domestically) sourced with low CO_2 emission
- Be manufactured and recycled in the same location
- Perform the same or better than today's status quo

 Enable any country to source, manufacture, and recycle their own batteries, thus democratizing energy storage

Organic Batteries

Organic batteries employ redoxactive small molecules or polymers as the active material in the electrode

- Going organic frees us from lithium, cobalt, and nickel
- Going organic conceptualizes a whole new resource market based on C, H, N, O, and S

Xie, J. & Zhang, Q., Journal of Materials Chemistry A 2016, 4, 7091-7106

Development of Polyaniline–Lithium Secondary Battery

Tsutomu Matsunaga¹, Hideharu Daifuku, Tadashi Nakajima, and Takahiro Kawagoe Research and Development Division, Bridgestone Corporation, 3-1-1. Ogawahigashi-Cho, Kodaira-Shi, Tokyo 187, Japan Received May 1, 1989

- First commercialized by Bridgestone-Seiko in 1987
 - Great cycle life (>1000), Theoretical capacity of 148 mAh/g
 - Low power density (11 mW/g) limited to low-demand applications
 - 3 V cell voltage
- Discontinued 5 years later

Non-conjugated Redox Active Polymers

• Redox site is usually group pendant to a non-conjugated backbone

- Insulating, but exceptions exist
- Polymer exchanges cations, anions or both during the redox reaction

PTMA: Poly(TEMPO methacrylate)

- Ma, T.; Easley, A. D.; Thakur, R. M.; Mohanty, K. T.; Wang, C.; Lutkenhaus, J. L. Annual Review of Chemical and Biomolecular Engineering 2023, 14 (1), 187-216.
- Y. Liang, Y. Yao, et al. J. Am. Chem. Soc. 2015, 137 (15), 4956 4959

Electron transfer theory for non-conjugated redox active polymers

Understanding the mechanism of redox activity in nitroxide radical polymers

- Electrons hop from site-to-site, following Marcus-Hush type kinetics
- Polymer chain diffusion and relaxation can add in the process
- Mixed electron-ion-solvent transport occurs

How do we "know" what is transporting in a nitroxide radical polymer?

Quartz crystal microbalance with dissipation monitoring (QCMD)

• Estimates real-time changes in mass and thickness of thin polymer film

Theoretical $\Delta m/Q = 1.54 \text{ mg/C}$ For PTMA and $CF_3SO_3^-$

• We estimate the change in mass per electron to decouple anion, cation, and solvent transport

Electrochemical QCMD Set-up

- To monitor mixed ion-electron transfer, a potentiostat is interfaced with the QCMD electrochemistry module
- The QCMD and potentiostat instruments operate simultaneously
- Potentiostat input: cyclic voltammogram, constant current charge/discharge, impedance spectroscopy

EQCM-D Response Modeling

(i) Sauerbrey Model Thin, rigid film

In summary

• $\Delta D \implies$ viscoelastic properties

Which macromolecular radical is best and why?

PTAm = poly(2,2,6,6-tetramethylpiperidinyloxy-4-yl acrylamide) PTVE = poly(2,2,6,6-tetramethylpiperidinyloxy-4-yl vinylether) PTMA = poly(2,2,6,6-tetramethylpiperidinyloxy-4-yl)

Organic salt = tetraethylammonium tetrafluoroborate aqueous solution (TEABF_{Δ})

Ma and Lutkenhaus, et al. Cell Reports Physical Science 2021, 2, 100414

EQCM-D reveals the role of coupled ion-water transfer in the kinetics

- PTMA has severe mass-hysteresis (least favorable polymer-water interaction)
- PTAm has least mass-hysteresis (most favorable polymer-water interaction)

Ma and Lutkenhaus, et al. Cell Reports Physical Science 2021, 2, 100414

Polymer-water affinity controls the no. of water molecules exchanged

- Water-polymer interactions from most to least favorable are:
 - PTAm > PTVE > PTMA
- Number of water molecules exchanged from least to most:
 - PTAm>PTVE>PTMA

Ma and Lutkenhaus, et al. Cell Reports Physical Science 2021, 2, 100414

Aqueous Electrolytes for Organic Radical Batteries

- PTAm performs well in aqueous electrolyte, but only TEABF₄ was examined
- Is there a better aqueous electrolyte and why so?

Ma T, Li C-H, Thakur RM, Tabor DP, Lutkenhaus JL. Nature Materials. 2023; 22(4):495-502.

Nine Electrolytes – Totally Different Performance!

Ma T, Li C-H, Thakur RM, Tabor DP, Lutkenhaus JL. Nature Materials. 2023; 22(4):495-502.

Explaining <u>10x</u> Changes in Capacity

- The Cl⁻ counterion causes huge amounts of swelling and dimensional changes during cycling
 - As indicated by the number of transferred water molecules via electrochemical QCMD
- The BF_4^- counterion has significantly less

Ma T, Li C-H, Thakur RM, Tabor DP, Lutkenhaus JL. Nature Materials. 2023; 22(4):495-502.

Kosmotropic/Chaotropic Considerations for Aqueous Electrolytes

- Cl⁻ ions are more kosmotropic (order-making with water) than BF₄⁻ ions
- BF₄⁻ ions are more chaotropic (disorder making with water) than Cl⁻ ions
- i.e., Cl⁻ ions have a stronger solvation shell such that the ions drag around more water

Ma T, Li C-H, Thakur RM, Tabor DP, Lutkenhaus JL. Nature Materials. 2023; 22(4):495-502.

In Situ Electrochemical Impedance Spectroscopy (EIS) - QCMD

- Yields relative time-scale of mass transport
- In electrochemical impedance spectroscopy (EIS):
 - Sinusoidal voltage is applied, current is measured
 - EIS Frequency is swept

Ma T, Li C-H, Thakur RM, Tabor DP, Lutkenhaus JL. Nature Materials. 2023; 22(4):495-502.

Time scale of reaction-diffusion from EIS-QCMD

The onset frequency of mass transport corresponds to the beginning of the low-frequency diffusion tail

Ma T, Li C-H, Thakur RM, Tabor DP, Lutkenhaus JL. Nature Materials. 2023; 22(4):495-502.

Excessive Swelling Diminishes Interchain Electron Transport

- MD simulations of a PTAm film
- Intrachain distance does not change much with oxidation or electrolyte
- Interchain distance increased more for NH₄Cl with PTAm oxidation
 - Electron transport becomes hindered, resulting in large losses in capacity

Spatially defined radicalcontaining polymers

- How does intrachain radical spacing affect the redox kinetics?
- Spatially defined radical-containing polymers synthesized via ADMET
- Each nitroxide radical unit is separated by 9, 11, 15, or 21 carbons

Pentzer EB, Lutkenhaus JL, et al. Chemistry of Materials, ASAP.

Spacing Affects Spin-spin Coupling

- As spacing increases, spin-spin coupling decreases
- Individual nitroxide radicals are less influenced by their neighbor for larger n

Spacing Affects the Redox Behavior

- The b-value shifts from 0.83 to 0.49 as *n* increases
 - Shift from reaction to diffusion control
- The voltammogram for *n*=9 is especially distorted
 - Indicates sluggish reaction

Pentzer EB, Lutkenhaus JL, et al. Chemistry of Materials, ASAP.

Three-electrode cell

WE: Polymer on glassy carbon (1.0-1.3 mg cm⁻²) RE and CE: Lithium metal Electrolyte: 0.5 M lithium triflate in propylene carbonate

29

This Doesn't Make Sense, Or Does It?

- These T_g's are above and below room temperature, and the measurements were taken at room temperature
- The polymer is plasticized with electrolyte in the electrochemical environment
 - True T_g is unknown, but it is likely well below RT
- Need to explore same polymer chemistry, vary molecular weight

Pentzer EB, Lutkenhaus JL, et al. Chemistry of Materials, ASAP.

Parting Thoughts

- Redox-active polymers are promising materials for metal-free batteries
- Their mixed conduction behavior and swelling can explain differences in energy storage performance
- Organic batteries can address global materials sourcing challenges for batteries

ACS APPLIED POLYMER MATERIALS

THE NEW GO-TO FORUM FOR EMERGENT POLYMER APPLICATIONS RESEARCH

Find out more and submit your manuscript pubs.acs.org/acsapm

Acknowledgements

Collaborators

Daniel Tabor and Emily Pentzer (TAMU)

<u>Support</u>

The work on PTMA and PTAm was supported by the grant DE-SC0014006; funded by the U.S. Department of Energy, Office of Science. The work on spatially defined redox-active polymers was supported by NSF 2104179.

Group Members Past and Present:	Ian Echols
Paul Auh	Evi Flouda
Yinan Yang	Dimitrios Loufakis
Chen Wang	Anish Patel
Tamunoemi Braide	Kasturi Sarang
Khirabdi Mohanty	Matt Bolen
Natalie Neal	Hyosung An
Suvesh Lalwani	Shaoyang Wang
Chika Eneh	Pilar Suarez Martinez
Alexandra Easley	Shena Luo

Yanpu Zhang Josh O'Neal Jared Mike Fei Li Yilan Ye Lin Shao Ju-Won Jeon Choonghyun Sung Joe Puhr Dariya Reid Se Ra Kwon **Ratul Mitra Thakur** Suyash Oka **Ting Ma** Junyeong Yun Miao Qi