

Synthesis and Film Formation of Emulsion Polymer Latexes Featuring H-Bonding via Janus Guanine-Cytosine Base Monomer

Steven Thompson,¹ Joanna Li, ¹ Dharmendra Singh,^{2,3} Gangadhar J. Sanjayan,^{2,3} and Per B. Zetterlund ¹

¹Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.

²Organic Chemistry Division, Council of Scientific and Industrial Research, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411008, India

³Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India

Background

Film formation and mechanical properties of emulsion polymers

Advantages

- Water Based
- High solids content (>50%)
- Fast and full conversion of monomers
- Control particle size
 and morphology
- Easy to tailor polymer properties

Emulsion Polymers

Uses

nm to µm sized particles dispersed in water

Background

Film formation and mechanical properties of emulsion polymers

Background

H-bonding and guanine-cytosine base (GCB) monomers

H-bonding to reinforce films without sacrificing film formations

Millerémæ, ZCNL. eet.aa//HTyrötaløigen Basred-Daneuse G-Forthatleoloafsetiats Pao Byroilelin Föl Bils clistog Statt Aster Obby (Pierptiele) ybbeeiol Acids, and Smart Polymers. J. Org. Diaeron 20/20 u Bis (20,191585 (24),59724-9734

MoendaY, St.ed/, al/ultipleshordssettinkBom SApraynReiotdacede0vedlukar P.oAym @/FelmsScom 20212pid44(22)s&46n853ssemblies of Soft Latex Particles. ACS Macro Letters 2012 1 (5), 603-608

Surfactant free emulsion polymerization of BA/MMA/GCBMA-Boc

Conventional emulsion polymerization of BA/MMA/GCBMA-Boc

Conventional emulsion polymerization of BA/MMA/GCBMA-Boc

60/40 BA/MMA

70/30 BA/MMA

Glass transition temperature increases with GCBMA-Boc content

 $T_{\rm g}$ of P(GCBMA-Boc) = 90°C

Film formation and Boc deprotection

- Typically, Boc deprotection procedures done using TFA/DCM (50/50 v/v) or conc. HCl
- Requires dissolution and destruction of the beneficial particle structure
- BOC protected latexes film formed directly from latex and then deprotected via heat

`NH₂ + CO₂ +

Film formation and Boc deprotection

Film formation done at 40°C in a silicone mold

60/40 5

60/40 10

70/30 °0 Films formed up to 10 mot 10

Film formation and Boc deprotection

Mechanical Properties of 60/40 BA/MMA Series

9 **UNSW**

Mechanical Properties of 60/40 BA/MMA Series

Clear effect of annealing/deprotecting on mechanical properties

Strain at break increases for higher mol% GCBMA

Deprotection leads to large increase in tensile strength

Mechanical Properties of 60/40 BA/MMA Series

Overall, 1 mol% GCBMA incorporation resulted in the best film

Mechanical Properties of 70/30 BA/MMA Series

Mechanical Properties of 70/30 BA/MMA Series

10

mol%

7.5

Mechanical Properties of 70/30 BA/MMA Series

- With 2.5 mol% incorporation of GCBMA resulted in the toughest film with large increase compared with base latex
- At 2.5 mol% and below, beneficial effects of hydrogen bonding result in stronger and tougher films
- Above 2.5 mol%, the detrimental effects of the high $T_{\rm g}$ nature of the GCBMA monomer result in weaker films
- An initial high elasticity latex formulation gains the most from GCBMA incorporation

Conclusions

- Successful copolymerization of GCBMA with BA/MMA in emulsion
- Film formation of latexes and successful deprotection of Boc protecting group
- With 1 mol% for 60/40 and 2.5 mol% for 70/30 GCBMA resulted in remarkable increase in mechanical properties
- Future works involving controlled polymerization to isolate GCBMA within either "Hard" or "Soft" Block

Acknowledgments

Joanna Li Prof Per B. Zetterlund

Dharmendra Singh **Prof. Gangadhar J. Sanjayan**

THANK YOU

