

Photoactive "Synthezymes" for Greener and Cleaner Detergents

Kai Mundsinger

<u>k.mundsinger@qut.edu.au</u> 38th APS

Green Light for Greener Chemistry

• Laundry Detergent Composition

- Require Elevated Temperatures
- Require Additives to Create "Safe Environments" for Lipases

- Can We Use (Visible) Light to Mimic Enzymatic Breakdown of Fatty Acids?
 - Minimize the Need for Builders, Bleach, Surfactants

Singlet Oxygen Reactions

Singleton et al., *J. Am. Chem. Soc.*, **2003**, 1*2*5 (5), 1319-1328. Alberti, M. N.; Orfanopoulos, M., *Chem. Eur. J.*, **2010**, 16 (31), 9414-9421.

Design of the Catalytic System

Polymer Scaffold •

4

- **Enabling Catalytic Moiety**
- ٠
- Covalent Crosslinks

Active Moiety

Polymer Design - SCNP

- Hydrophilicity via Side Chains
- Hydrophobic Backbone

Henke

macroarc **QUT**

oft matter materials arour

Polymer Design – Block vs Stat Copolymer

macroarc QUT

Active Centre Selection

Benchmarking Photosensitizers

Acetonitrile 10 % Water 1 % Methylene Blue λ = 625 nm

Benchmarking Photosensitizers

2.4 mL Acetonitrile/Water (9/1) 80 mg Oleic Acid 0.8 mg Photocatalyst

Irradiation Air bubbling

Photocatalyst	λ _{max} ACN/H ₂ O / nm	60 min Conversion _{NMR} / %	Max. Conversion _{NMR} / %
Fluorescein	499	4	4
Eosin Y	533	20	50
Rose Bengal	556	60	60
Nile Blue	631	0	0
Methylene Blue	657	45	65
IR-780	780	0	0

Synthetic Route to RB-SCNP

Mundsinger, K., Tuten, B., Wang, L., Neubauer, K., Kropf, C., O'Mara, M., Barner-Kowollik, C., *Angew. Chem. Int. Ed., 2023, 62*, e202311734

10

P1 Folding to RB-SCNP

- Reduction of $r_{\rm H}$
- Reduction of *Đ*
 - Successful Folding
 - Increased UV Response
 - Successful Functionalization

macroarc QU

MD Simulation – Active Centres

• RB Residue on SCNP Surface 40% of the Time

• Oleic Acid Collides with RB 5% of the Time

Henke

macroarc QUT

Mundsinger, K., Tuten, B., Wang, L., Neubauer, K., Kropf, C., O'Mara, M., Barner-Kowollik, C., *Angew. Chem. Int. Ed., 2023, 62*, e202311734

Interplay of Hydrophobicity and Polarity

$3.7 \ \mu M \cdot L^{-1}$ Photoactive Compound

Active Compound	Subst µmol	trate ·mL ⁻¹	Conve %	ersion / mmol	ΤΟΝ	J=0.365 J=1.021 6 5 4
None	OA	24	0	0	0	
P1	OA	24	0	0	0	
Pl and RB	OA	24	11.6	5	700	
RB	OA	24	12.7	6	800	2 Ex more efficient
RB-SCNP	OA	24	42.9	20	2800	5.5X more enicient
RB	OA	143	7.0	20	2700	
RB-SCNP	OA	143	25.3	72	9800	3.5x more efficient
RB	BD	547	1.1	12	1600	
RB-SCNP	BD	547	1.5	16	2200	slightly more efficient
RB	HA	143	2.0	6	800	
RB-SCNP	HA	143	1.5	4	600	less efficient

Henke

macroarc QUT

Mundsinger, K., Tuten, B., Wang, L., Neubauer, K., Kropf, C., O'Mara, M., Barner-Kowollik, C., *Angew. Chem Int. Ed.,* **2023,** *62*, e202311734

Perspective

- Polymeric Scaffolds Enable (Pseudo)Catalytic Behaviour
- (Visible) Light Triggers Conventionally Thermal Transformations
- Standardised Stain Testing Showed Activity at 5.5 nM·L⁻¹ @Henkel

Additional Functionality Enables C-C Bond Scission

Gillhuber, S., Holloway, J., Mundsinger, K., Kammerer, J., Frisch, H., Barner-Kowollik, C., Roesky, P., *Angew. Chem Int. Ed.,* submitted. Li et al. *Org. Chem Front.*, **2022**, *9*, 6229-6239

GEMEINSCHAFT

Funding QUI Centre for Materials Henke Science FUTURE Australian Government 3D MATTER MADE TO ORDER BATTERY Australian Research Council Deutsche Forschungsgemeinschaft Lapinus' DFG HELMHOLTZ

German Research Foundation

BTT Group

Partners

Monday 5 pm in Millenium Ballroom

Polymer-membrane interactions as a target for polymeric antivirals

Dr Nathan Boase

Monday 5.15 pm in Tasman 1

Main-chain Macromolecular Hydrazone Photoswitches <u>Linh-Duy Thai</u>

Tuesday 11.15 am in Tasman 1

Light-triggered Metal-induced Flow Synthesis of Catalytically Active Single-chain Polymer Nanoparticles

Sebastian Gillhuber

Investigating the impact of olefinic structure in polystyrene-polyisoprene-polystyrene (SIS) triblock copolymers on their performance as flexible electrothermal composite

heaters - <u>Hiruni Dedduwakumara</u>

Tuesday 12.15 pm in Tasman 1

APS Program

Tuesday 12.45 pm in Tasman 1

Visible-Light-Induced Control over Folding and Unfolding of Fluorescent and Catalytically Active Single-Chain Nanoparticles - <u>Patrick Maag</u>

Tuesday 4 pm in Tasman 1

Dynamic Chalcogen Squares for Material and Topological Control over Macromolecules - <u>Dr Bryan Tuten</u>

