Block Copolymer Self-assembly: Exploitation of Hydrogen Bonding for Nanoparticle Morphology Control via Incorporation of Triazine-Based Comonomers by RAFT Polymerization

<u>Farah Haque</u>,¹ Steven W. Thompson,¹ Fumi Ishizuka,¹ Rhiannon P. Kuchel, ² Dharmendra Singh,^{3,4} Gangadhar J. Sanjayan,^{3,4} and Per B. Zetterlund¹

¹Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.

²Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia

³Organic Chemistry Division, Council of Scientific and Industrial Research, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411008, India

⁴Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India

Self-assembly of amphiphilic block copolymers

Driving force: Chemical incompatibility of one of the blocks with the continuous phase

(typically, aggregation occurs due to the insolubility of the hydrophobic block in water)

UNSW

Incorporation of hydrogen bonding interactions

Strategy

DP of hydrophilic block (20, 40)

DP of hydrophobic block (40, 80, 100, 120, 140)

Variable amount of GCB content (0, 5, 10, 15 mol%)

DP of hydrophobic block, without GCB (40, 80, 100, 120, 140)

Effect of deprotection (Self-assembly of protected polymers)

Stimuli-responsive behavior

Strategy

MWDs of macroRAFT and amphiphilic block copolymers

Confirmation of hydrogen bonding by FTIR spectroscopy

- $PDMAA_{40}$ -*b*-P[BA-*stat*-(GCB-Boc(5%))]₈₀ in the solid state (green curve),
- $PDMAA_{40}$ -*b*-P[BA-*stat*-GCB(5%)]₈₀ (yellow curve) and
- PDMAA₄₀-*b*-P[BA-*stat*-GCB(10%)]₈₀ (red curve) in the amide region (Left) and N-H stretching region(right).

Morphology of self-assembled polymers: Effect of GCB content

UNSW SYDNEY

Morphology of self-assembled polymers: effect of GCB content

- Initial increase in GCB leads to reduction in particle size; formation of spheres
- Further increasing GCB content results in transition towards higher order morphologies

Effect of hydrophobic block length on morphology

Presence of GCB

(a) Worms (b) Small vesicles (c) Large vesicles (d) Multi-layered vesicle

PDMAA₄₀-b-PBA₈₀₋₁₄₀ (e) DP 80, 0% GCB (f) DP 100, 0% GCB (g) DP 120, 0% GCB (h) DP 140, 0% GCB (b) DP 140, 0% GCB (c) DP 100, 0% GCB (c

Absence of GCB

- Unstable system
- Aggregate formation
- Due to low $T_{\rm g}$ of polymers

Effect of Boc deprotection on morphology

D UNSW

Stimuli-responsive behavior of polymeric nanoparticles

Polymer: PDMAA₄₀-b-P[BA-stat-GCB(10%)]₈₀

- Temperature thermal energy leads to the breakage of hydrogen bonds, allowing chains to rearrange into smaller particles
- Temperature \downarrow hydrogen bonds are reformed with the formation of long and branched worms

Summary

- Incorporation of low mole fraction (15 mol%) nucleobase containing monomer
- Highly directional complementary nucleobase hydrogen bonding interactions generated by GCB monomer
- Combined effect of hydrogen bonding and solvent immiscibility drives the self-assembly to higher-order morphology
- Stimuli-responsive behavior makes it potential candidate for emerging applications

Acknowledgments

Supervisor: Professor Per B. Zetterlund

Co-supervisors: Dr. Steven W. Thompson Dr. Fumi Ishizuka Collaborators: Dharmendra Singh

Dr. Gangadhar J. Sanjayan

