

Understanding structure-activity relationships of polymeric nanoparticles in biological applications

Dr Amanda K. Pearce

Lecturer in Chemistry

38th Australasian Polymer Symposium, Auckland, Feb 2024

Loughborough University

Polymer nanomedicines – why?

- Many small molecule drugs suffer poor solubility and rapid clearance after administration in the body
- · Researchers have explored nanoparticles as drug carriers
 - Enhanced, site-specific drug delivery while minimising off-target toxicity
- Nanomedicines are a highly diverse group of drug products
 - Polymer-drug conjugates, polymer-protein conjugates, proteinbased nanoparticles, polymeric micelles, inorganic nanoparticles, lipid-based etc
- Polymers are attractive here they are highly tuneable, can target limitless chemistries, topologies etc
- Aim: improve the stability & solubility of encapsulated cargos, promote transport across membranes and prolong circulation times to increase safety and efficacy

Why is new research needed?

- We are by no means there yet!
- Thousands of different nanomedicine formulations have been designed and evaluated over the years
- Approximately fifty of these formulations are currently approved for clinical use – roughly equates to less than 10% success rate!
- Major issue of a translational gap between animal and human studies
- Mainly, we don't fully understand the behaviour and functionality of nanomedicines in the body

Drug Deliv Transl Res. 2020; 10(3): 721-725

Challenges in polymer nanomedicine: understanding key nanoparticle properties

In vivo biological systems are complicated, and many factors can impact nanoparticle behaviours

Study limitations: narrow scope of nanoparticle systems, lack of biodegradability

Hoshyar, N. et al, Nanomedicine 2016, 11 (6), 673-692.

Loughborough University

Design and synthesis of varying polymer architectures with the same underlying chemistries

A. K. Pearce*, et al. *Bioconj. Chem.* 2019, *30* (9), 2300-2311.
A. K. Pearce*, et al., *Adv. Healthc. Mater.* 2020, 9 (22), 2000892.

Polymers form nanoparticles with varying sizes and architectures from the same fundamental chemistries

	Mn (SEC-MALLS)	SS per polymer (mol%)	D	_h (DLS)	Size (TEM)	Zeta Potential (mV)
HBP-HPMA-S	15 kDa	0		5 nm	5 ± 1 nm	-21
HBP-HPMA-L	22 kDa	0		12 nm	11 ± 3 nm	-12
HBP-SS-LH	50 kDa	10		8 nm	-	-19
HBP-SS-HH	58 kDa	10		10 nm	10 ± 1 nm	-24
Star-SS-S	86 kDa	7		12 nm	-	-16
Star-SS-L	122 kDa	5		15 nm	13 ± 2 nm	-15
Linear-SS	257 kDa	1		30 nm	22 ± 2 nm	-5.5
Micelle-SS	3,000 kDa	5		60 nm	36 ± 3 nm	-21

Dynamic Light Scattering (DLS) HBP-HPMA-L HBP-SS-HH Star-SS-L Linear-SS Micelle-SS

Transmission Electron Microscopy (TEM)

A. K. Pearce*, et al., Adv. Healthc. Mater. 2020, 9 (22), 2000892.

Polymer size and architecture control stability to protein attachment and macrophage association Uptake by macrophages (RAW264.7 cells)

A. K. Pearce*, et al., Adv. Healthc. Mater. 2020, 9 (22), 2000892.

Loughborough University

Protein interactions

#InspiringWinners since 1909

8

How does nanoparticle architecture influence end fate in healthy mice following systemic injection?

From systemic circulation, polymer properties and biological interactions lead to clearance from the system or accumulation within organs

agreement with in vitro data

Loughborough University

A. K. Pearce*, et al., Adv. Healthc. Mater. 2020, 9 (22), 2000892.

A. K. Pearce*, et al., Adv. Healthc. Mater. 2020, 9 (22), 2000892.

Bioreducible polymer-dox conjugate NPs are more effective than free drug to triple negative breast cancer cells *in vitro*

Loughborough

A. K. Pearce*, et al., Adv. Healthc. Mater. 2020, 9 (22), 2000892.

0

Concentration (µM

Dosing schedule plays an important role in polymer-drug conjugate efficacy in orthoptic *in vivo* mouse models

A. K. Pearce*, et al., Adv. Healthc. Mater. 2020, 9 (22), 2000892.

Moving these materials towards clinical relevance: biodegradability matters!

A.K. Pearce, *et al. Macromol. Chem. Phys.* 2019, 1900270 C.E. Vasey[‡], A.K. Pearce[‡], *et al. Biomater. Sci.* 2019, 7 (9).

Block spacing of cationic monomers enhances drug loading and antimicrobial efficacy

Demonstrate a simple approach to drugfunctionalised particles by exploiting electrostatic interactions with NH₃⁺ groups

How does structure, chemistry and monomer arrangement affect polymer properties?

Copolymer vs homopolymer? Block vs random? Redox-responsive vs non-responsive?

Loughborough

M. Rauschenbach, S. B. Lawrenson, V. Taresco, A. K. Pearce*, R. K. O'Reilly*, *Macromol. Rapid Commun.* 2020, 2000190.

Block spacing of cationic monomers enhances drug loading and antimicrobial efficacy

Block copolymers outperformed their random analogues regardless of amphiphilicity (PEGMA)

Drug loading and antimicrobial activity

Sample	Structure of	Usnic acid c	MIC (µg/mL)		
	macromonomer	Drug content (wt%) Encapsulation efficiency (%EE)		SA01	SA02
Usnic acid*	-	-		250	125
HB1-UA	Random	2	19	125	63
HB2-UA	Random	4	33	125	63
HB3-UA	Random	33	27	31	16
HB4-UA	Random	37	30	31	16
HB5-UA	Block	4	29	63	31
HB6-UA	Block	6	50	63	31
HB7-UA	Block	46	37	8	4
HB8-UA	Block	51	41	8	4

HB1: PEGMA-p[HEMAp(LA)-co-p(tBSC)] HB2: PEGMA-SS-p[HEMAp(LA)-co-p(tBSC)]

HB3: p[HEMAp(LA)-co-p(tBSC)] HB4: SS-p[HEMAp(LA)-co-p(tBSC)]

Demonstrate a simple approach to drugfunctionalised particles by exploiting electrostatic interactions with NH₃⁺ groups

M. Rauschenbach, S. B. Lawrenson, V. Taresco, A. K. Pearce*, R. K. O'Reilly*, *Macromol. Rapid Commun.* 2020, 2000190.

Getting back to fundamentals – the protein corona

- We have a lot of synthetic tools to create nanoparticles with virtually any chemistry
- Exploit this to gain a more complete understanding of protein corona formation and downstream impacts on circulation, clearance, cell uptake, endosomal escape.

From systemic circulation, polymer properties direct biological interactions with serum proteins and macrophages. WIREs Nanomed Nanobiotechnol. 2021

Biomolecular coronas provide the biological identity of nanosized materials, Nat. Nanotechnol. 2012

Polymer properties and biological interactions lead to clearance from the system or accumulation within organs or tumour tissue. Polymers, **2019**

Challenges in studying the protein corona

- Not only do we need to analyse the PC, but we need to ensure methods are reproducible, reliable, and accessible in a wide range of chemistry/pharmacy research labs
- Need to standardise everything from the PC experiments through to database searching and analysis

Significant data variability, with only 1.8% of proteins consistently identified across these centres!

Loughborough

versitv

Peptide LC-MS for studying the protein corona

An automated solution

- Pseudo LC-MS/MS with Data Independent Acquisition (DIA)
- Data Dependent Acquisition (DDA)
 - Isolate a specific precursor ion and fragment, fragments directly linked to peptide precursor
 - Requires at least two MS steps (normally two different mass analysers)
- Data Independent Acquisition
 - Window with many precursors
 - Fragments from multiple precursors need to be demultiplexed

Unpublished work

Can be done with one MS step

Loughborough

Alternate low/high collision energy

Unpublished work

Method development using human serum

Fraction	UniProt	Protein name	extraction	extraction	
		Internation Contraction Contraction Contraction	Unique pept	de count	
CA					
CB	P01023	Apna-2-macrogrobulin (A2MG_HUMAN)	16		
	P00738	Haptoglobin (HPT_HUMAN)	1*		
CC					
co	P01857	Immunoglobulin beavy constant gamma 1 (ICHG1_HUMAN)	9	2	
	A0M8Q6	(IGLC7: HUMAN)	2		
	BSA064	Immunoglobulin tambda-like polypeptide 5 (IGEL5_HUMAN)	4.		
	A0M8Q6.89 A064	Immunoglobulin lambda constant 7 (IGa.C?_HUMAN);mmunoglobulin lambda-like polypepilde 5 (IGLL5_HUMAN)	۳		
	P01834	Immunoglobulin kappa constant (IGKC_HUMAN)	3		
	P01050	Immunoglobulin heavy constant gamma 2	2		
CE	P01857	(ICHG2_HUMAN) Immunoglobulin heavy constant gamma 1 (ICHG1_HLMMAN)	4	17	
	P00450	Ceruloplasmin (CERU_HUMAN)	1*		
	P01024	Complement C3 (CC3_HUMAN)	14		
	P01834	Immunoglobalin kappa constant (/GKC_HLMAN)	2		
	P01075	Immunoglobulin heavy constant alpha 1 (ICHA1_HUMAN)	4		
	P02768	Abumin (ALBU_HUMAN)	5		
	POCOL4	Complement C4-A (CO4A_HUMAN)	3		
	P01859	Immunoglobulin heavy constant gamma 2 (IGHG2_HUMAN)	2		
CF		work			
CG	P02768	Albumin (ALBU_HUMAN)	2		
CH	P02767	Serotransferrin (TRFE_HUMAN)	26	15	
	P01011	Alpha-1-antichymoleypsin (AACT_HUMAN)	1*		
	P04217	Alpha-18-glycoprotein (A186_HUMAN)	1*		
CI	P01009	Alpha-1-anthypsin (A1AT_HUMAN)	5	.4	
	P02768	Albumin (ALBU_HUMAN)	27	22	
	P02790	Hemopexin (HEMO_HUMAN)	1°	T.	
	000610	Clathrin beavy chain 1 (CLH1_HUMAN)		1*	
	Q96IU4	Putative protein-lysine deacytase ABHD 148 (ABHEB_HUMAN)		*	
	P01011	Apha-1-antichymotrypsin (AACT_HJMAN)	2.		
C)	P02768	Albumin (ALBU_HUMAN)	12	(4)	
	P01024	Complement C3 (CO3_HUMAN)	-1°		
CK:	P02768	Albumin (ALBU_HUMAN)	2		
ĊL.	P02647	Apolipoprotein A-1 (APOA1 HUMAN)	16	14	
	P02768	Albumin (ALBU HUMAN)	0	- 51	
643	14.00% (1905)		10 C		

Unpublished work

Method development using human serum

Numbers of unique peptides in each analysed sample

Some samples not yielding peptides – sensitivity issue?

Loughborough

iversitv

Additional extraction steps improve peptide recovery and aid in mapping more of the protein sequence -> higher accuracy for database searching!

Acknowledgements

Collaborators

- Prof Cameron Alexander
- Prof Morgan Alexander
- Dr Jessica Blair
- Prof Anna Grabowska
- Alison Ritchie
- Phil Clarke
- Prof Rachel O'Reilly

Loughborough University

- Emma Cooper
- Pete Hughes
- Katrina Cranfield
- Sophie Baxter
- Chathumalee Manchanayaka
 Arachchige Dona
 - Dr Jim Reynolds
 - Dr Jedd Bellamy-Carter
 - Dr Vincenzo Taresco
 - Dr Rob Cavanagh
 - Dr Akosua Anane-Adjei
 - Dr Catherine Vasey
 - Moritz Rauschenbach
 - Dr Stefan Lawrenson

