Effect of the molecular structure of oxetane additives on the enhancement of PEDOT:PSS films aqueous stability and conductivity

Jorge Morgado

Instituto de Telecomunicações, and

Department of Bioengineering, Instituto Superior Técnico, University of Lisbon

jorge.morgado@lx.it.pt

instituto de telecomunicações

© 2022, Instituto de Telecomunicações

Relevance

>What is PEDOT:PSS ?

➢Properties (source: Heraeus (Clevios™))

Mixed (ionic/electronic) and tuneable conductivity ca. 10⁻³ S/cm (AI4083 – 1:6, w/w)
ca. 0.1 S/cm (PH1000 – 1:2.5, w/w)

 \Rightarrow Increase up to ca. 4000 S/cm

- Stabilisation in aqueous media: cross-linking
 - + GOPS+EG+DBSA (σH 5-17 S/cm)
 - DVS+EG+DBSA (σH 13 S/cm)
- Applications: (opto)electronics and biological

Our previous work with oxetanes

Oxetane-functionalised conjugated polymers – formation of insoluble networks

Oxetanes as PEDOT: PSS additives

Adv. Mater. Interfaces 2100517 (2021); Polymer 282, 126196 (2023); Org. Elect. 125, 106987 (2024)

HMO as PEDOT: PSS additive

Adv. Mater. Interfaces 2100517 (2021)

HMO as PEDOT: PSS additive

instituto de telecomunicações

Adv. Mater. Interfaces 2100517 (2021)

HMO as PEDOT: PSS additive: stability in water

P(HMO)-graft-PSS

instituto de telecomunicações

TÉCNICO LISBOA

HMO as PEDO:PSS additive: condensation with PSS

¹H NMR of HPSS:Ox1 films (D₂O soln.)

Conformational changes of PEDOT:PSS network: Raman spectra

Oxetanes as PEDOT:PSS additives: optimisation

 thickness after water immersion

Oxetanes as PEDOT:PSS additives: optimisation

✓ ca. three orders of magnitude increase in PEDOT:PSS (PH1000) films' conductivity upon addition of Ox1,Ox2,Ox3

TÉCNICO LISBOA

Oxetanes as PEDO:PSS additives: condensation with PSS

Conformational changes of PEDOT:PSS network: Raman spectra

13

AFM images of most conducting films

PEDOT:PSS:Ox3 (0.03 v/v) film/glass after water immersion

Topography

Conclusions

- 1. The addition of oxetanes to the as-received PEDOT:PSS dispersion improves the films **structural stability** when in contact with water;
- 2. The use of Ox3, the most hydrophilic, improves the **conductivity** of PH1000 by more than **3 orders of magnitude** (from ca. 0.1 S/cm to 507 S/cm);
- 3. This improvement, involving mild conditions, **surpasses that obtained with GOPS** (+EG+DBSA), that reaches a conductivity of ca. 13 S/cm;
- **4. Applications** where oxetane-crosslinked PEDOT:PSS films are in contact with aqueous solutions (OECTs and scaffolds for cells culture and electrical stimulation) are in progress.

Acknowledgments

Dr. Ana Charas, Sara M. Jorge, António Ablú, Cátia Príncipe Instituto de Telecomunicações

Dr. Fábio Garrudo

Instituto de Telecomunicações and iBB - Institute for Bioengineering and Biosciences & Associate Laboratory i4HB - Institute for Health and Bioeconomy, Lisbon

Prof. Adelino Galvão, Prof. Luís F. Santos

Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Engenharia Química, Instituto Superior Técnico, University of Lisbon

Financial Support:

FCT (Portuguese Foundation for Science and Technology) under the projects: PTDC/CTM-REF/28108/2017-POCI-01-0145-FEDER-028108), UIDB/04565/2020 and UIDB/50008/2020.

