Herbert Wertheim **College of Engineering** UNIVERSITY of FLORIDA

> **Department of Materials** Science & Engineering

Charge density-driven demixing in multicomponent polyelectrolyte **complex coacervates**

Angelika Neitzel, Ph.D.

Rhines Rising Star Robert DeHoff Assistant Professor of Materials Science & Engineering University of Florida

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

Coacervates form due to intermolecular interactions

Associative phase separation = coacervation

From Latin: *coacervāre* = to heap up, pile up

Cellular biomacromolecules (e.g., proteins, RNA) form *dense polymer droplets* = membraneless organelles (MOs)

MOs compartmentalize and concentrate reagents and facilitate biochemical reactions within cells

No membrane \rightarrow ability to rapidly assemble/disassemble in response to external stimuli

The internal structure of these *liquid-like* polymer phases continues to fascinate scientists

Dignon, D.L.; Best, R.B.; Mittal, J. Annu. Rev. Phys. Chem. 2020, 71, 53.

DEPARTMENT OF MATERIALS SCIENCE & ENGINEERING

Not even 10 years ago it was shown that MOs are not homogeneous

Simpler models for MOs can help us better understand these interesting structures

Feric et al. Cell 2016, 165, 1686.

- MOs are composed of coexisting phases
- Ribosome synthesis and assembly suggested to take place in nucleolar subcompartments
- Compartmentalization of molecules and processes
 - MOs can contain 100s of proteins and RNAs
 - Usually enriched in proteins with intrinsically disordered regions \rightarrow "basic polymer structure"

Coacervation of oppositely charged polyelectrolytes serves as MO model

Electrostatic interactions are prevalent in biology—other noncovalent interactions still matter

Neitzel, A.E.; De Hoe, G.X.; Tirrell, M. V. Curr. Opin. Solid State Mater. Sci. 2021, 25, 100897. Chen, S.; Wang, Z.-G. Proc. Natl. Acad. Sci. 2022, 119, e2209975119. 4

PECs are also referred to as "saloplastics"

Thermoplastics are processed using temperature, saloplastics are processed using salt

Neitzel, A.E.; De Hoe, G.X.; Tirrell, M. V. Curr. Opin. Solid State Mater. Sci. 2021, 25, 100897. Wang, Q.; Schlenoff, J. B. Macromolecules 2014, 47, 3108–3116.

ENGINEER TO TRANSFORM THE

5

DEPARTMENT OF MATERIALS SCIENCE & ENGINEERING

Theorists describe liquid PEC phase as melt of "electrostatic blobs"

Semidilute solution = [polymer] above the overlap concentration c*

Overlapping blobs with correlation length ξ . Chain inside blob unaware of chains outside

Chain conformation in blob scales as: $R_g \sim N^{\nu}$, where $\nu = \frac{1}{3}$ for bad, $\frac{1}{2}$ for θ , and $\frac{3}{5}$ for good solvent

Charge correlations between blobs is hypothesized to be the glue that holds PECs together

DEPARTMENT OF MATERIALS SCIENCE & ENGINEERING

PECs structurally similar to neutral semidilute polymer solution

Small Angle Scattering (SAS) profiles for polymers Size Shape Surface a^{-0} log[P(q)] Guinier Fourier Porod log(q)

Radius of Gyration / Cross-section Structure / Surface per Volume

Boldon, L.; Laliberte, F.; Liu, L. Nano Reviews 2015, 6, 25661. Spruijt, Leermakers,...Cohen Stuart; Macromolecules 2013.

f = 0.6

What is the relationship between PE charge fraction and PEC density?

f = 1

There is a difference between pairs of nonpolarizable and polarizable ion pairs

Decrease number of charges per polymer chain instead to find universal relationship?

Cannot establish **universal** trends with salt!

Does the density of the PEC phase (ϕ) change with charge fraction (f) as predicted by theory?

Rumyantsev, A. M.; Zhulina, E.B.; Borisov, O. V. Macromolecules 2018, 51, 3788.

Modular polyether platform meets required design parameters

- Polyelectrolytes soluble in water and aqueous salt solutions at all *f* values
- Near ideally random microstructure
- Homologous polycations and polyanions (i.e., $f_+ = f_-$, identical N_n , D, and sequence)
- Other non-covalent interactions minimized (oxidation reduces hydrophobic interactions)

Probe phase behavior for f = 0.1-1.0

DEPARTMENT OF MATERIALS SCIENCE & ENGINEERING

Single phase PECs binodal envelope shrinks with decreasing *f*

	0.00 M	0.04 M	0.075 M	0.10 M
f = 0.30		36		
	0.00 M	0.20 M	0.425 M	0.450 M
f = 0.54		0000		
	0.00 M	0.50 M	0.70 M	0.75 M
<i>f</i> = 0.72	0.00 M	0.50 M	0.70 M	0.75 M
<i>f</i> = 0.72	0.00 M 0.00 M	0.50 M 0.60 M	0.70 M 0.80 M	0.75 M 1.00 M

Agreement between experiment & simulations but...

Theory is a more appropriate predictor at very low $f \rightarrow$ we need longer chains!

то TRANSFORM

$$\phi \sim (f^2)^{\frac{(3\nu-1)}{(2-\nu)}}$$

$$\phi \sim f^{2/3}$$

POWERI

DEPARTMENT OF MATERIALS SCIENCE & ENGINEERING

SAS with neutrons reveals the length scale of Coulomb repulsions

Fang, Y. N.; Rumyantsev, A. M.; Neitzel, A. E.; Liang, H.; Heller, W. T.; Nealey, P. F.; Tirrell, M. V.; de Pablo, J. J. Proc. Natl. Acad. Sci. 2023, 120, e2302151120.

12

DEPARTMENT OF MATERIALS SCIENCE & ENGINEERING

Phase behavior and structure of single phase PECs resolved

Neitzel, A. E.; Fang, Y. N.; Yu, B.; Rumyantsev, A. R.; de Pablo, J. J.; Tirrell, M. V. Macromolecules 2021, 54, 6878-6890.

Fang, Y. N.; Rumyantsev, A. R.; **Neitzel, A. E.**; Liang, H.; Heller, W. T.; Tirrell, M. V.; de Pablo, J. J.; Proc. Natl. Acad. Sci. 2023, 120, e2302151120.

With these data in hand, we can tackle more complicated multicomponent PEC systems

POWERING THE NEW ENGINEER T

DEPARTMENT OF MATERIALS SCIENCE & ENGINEERING

Nested PEC structures arise due to immiscibility of two or more PECs

Generally, mixing \geq 2 dissimilar polymers results in immiscibility; is this surprising/interesting?

Chen et al. ACS Macro Lett. 2021, 10, 1041.

POWERING

DEPARTMENT OF MATERIALS SCIENCE & ENGINEERING

Theory predicts that charge density differences alone can drive demixing

Interesting AND platform of variable f polyelectrolytes is ideally suited to corroborate this!

Chen et al. ACS Macro Lett. 2021, 10, 1041.

electrostatic contribution

Trace dye-labeled polycations introduced to probe demixing with 3 PEs

high f

POWERING THE NEW ENGINEER T

DEPARTMENT OF MATERIALS SCIENCE & ENGINEERING

Trace dye-labeled polycations introduced to probe demixing with 3 PEs

Vesicles rather than multiphase polyelectrolyte complex coacervates observed

$f_- = 0.30 + f_+ = 1.0$

POWERING THE NEW ENGINEER T

DEPARTMENT OF MATERIALS SCIENCE & ENGINEERING

Mixture of PE pairs mismatched in charge density form nested structures

At the highest achievable charge density difference with our system little intermixing observed

DEPARTMENT OF MATERIALS SCIENCE & ENGINEERING

Four of the six symmetric PEC pairs exhibit demixing

DEPARTMENT OF MATERIALS SCIENCE & ENGINEERING

Line intensity profiles quantify intermixing of polycations in droplets

Higher Δf results in little intermixing of polycation between inner and outer droplets

 $[f_b^+]$

^Jinner

POWERING THE NEW ENGINEER T

DEPARTMENT OF MATERIALS SCIENCE & ENGINEERING

K . . .

⊕**-**€

Polycation partition coefficients track with PEC density differences

Ð	0000	P,I	<i>f</i> b	+] _{outer}	•
$f_{a}^{+}f_{a}^{-}$ (a)	c _{P,a} (wt%)	f _a f _b (a/b)	$\frac{\Delta f}{(f_b - f_a)}$	$\Delta c_{P,a/b}$ (wt%)	K _{P,b}
30	16.1	30/54	24	14.1	3
		30/72	42	17.3	5
54	30.2	54/72	18	3.2	_
		54/100	46	7.4	2
72	33.4	72/100	28	4.4	—
100	37.8	30/100	70	21.7	9.5

DEPARTMENT OF MATERIALS SCIENCE & ENGINEERING

Addition of salt leads to dissolution and uptake of outer droplet

DEPARTMENT OF MATERIALS SCIENCE & ENGINEERING

Asymmetric combinations also produce multiphase PECs

POWERI ENGINEER TO TRANSFORM THE FUTURE

DEPARTMENT OF MATERIALS SCIENCE & ENGINEERING

Of 36 possible combinations 32 produce multiphase PECs

$f_a f_b$	Δf	Multiphase	Miscible
f ₃₀ f ₁₀₀	70	18	1
f ₃₀ f ₇₂	42	17	2
f ₃₀ f ₅₄	24	17	2
$f_{54} f_{100}$	46	16	3
$f_{72} f_{100}$	28	15	4
<i>f</i> ₅₄ <i>f</i> ₇₂	18	14	5

Miscibility strongly correlated with similar PEC density = similar water content

POWERING

DEPARTMENT OF MATERIALS SCIENCE & ENGINEERING

Hydration differences b/w PECs are more powerful than Δf alone

3-component PE mixtures of similar *f*-values will demix due to hydration differences

Poly(Guan-stat-EO)

POWERING

DEPARTMENT OF MATERIALS SCIENCE & ENGINEERING

Summary and acknowledgements

ENGINEER TO TRANSFORM THE FUTURE

Prof. Artem Rumyantsev (now NCSU)

Yan Fang (U Chicago)

Dr. Aman Agrawal (U Houston)

Dr. Heyi Liang (U Chicago)

Dr. Boyuan Yu (U Chicago)

Prof. Alamgir Karim (U Houston)

Prof. Juan de Pablo (U Chicago)

Prof. Matthew Tirrell (U Chicago)

POWERING THE NEW ENGINEER T

Air- and moisture-free synthetic methods are a valuable skill

- 1. Polyethylene oxide (PEO) \rightarrow water-soluble
- 2. EO/AGE copolymerize near ideally randomly
- Postpolymerization modification of AGE → homologous polyanions and polycations
- 4. Anionic polymerization: synthesis of long and welldefined polymer chains
- 5. EO comonomer: minimal chemical complexity introduced

Anionic polymerization setup at Argonne National Laboratory

TO TRANSFORM THE FUTURE

POWERING

DEPARTMENT OF MATERIALS SCIENCE & ENGINEERING

Molecular characterization shows well-defined polymers of variable f

d_4 -Ethylene oxide provides partially deuterated polyelectrolyte

POWERING THE NEW ENGINEER T

Click chemistry provides homologous polyelectrolytes for study

1: Functionalize neutral copolymers 2: Separate the polyelectrolyte complex and prepare polyelectrolyte complexes from the supernatant phase and burn SH and PEC **Supernatant** 100 **f**₊ = **f**_ salt volume fraction ($\phi_{\rm s}$) 80 water evaporation (-) Weight (wt%) 60 40 20 mix centrifugation polymer degradation salt 0 500 600 100 200 300 400 Temperature (°C)

3: Quantify wt % polymer and salt in both phases at different [NaCl] and plot binodals

C3

polymer volume fraction (ϕ_p)

NEW

DEPARTMENT OF MATERIALS SCIENCE & ENGINEERING

Want phase separation due to **complexation** of oppositely charged polymers \rightarrow can't use Guan

DEPARTMENT OF MATERIALS SCIENCE & ENGINEERING

Other intermolecular interactions are coming into play

Lou et al. ACS Cent. Sci. 2019, 5, 549.

Finally, we arrive at a system that meets all requirements!

- Polyelectrolytes soluble in water and aqueous salt solutions at all *f* values
- Near ideally random microstructure
- Homologous polycations and polyanions (i.e., $f_+ = f_-$, identical N_n , D, and sequence)
- Other non-covalent interactions minimized (oxidation reduces hydrophobic interactions)

Probe phase behavior for f = 0.1-1.0

POWERING

DEPARTMENT OF MATERIALS SCIENCE & ENGINEERING

Agreement between experiment & simulations but...

ENGINEER TO TRANSFORM THE FUTURE

DEPARTMENT OF MATERIALS SCIENCE & ENGINEERING

Gibbs free energy of mixing has ΔH term dependent on electrostatics

Your footer should be used to cite references formatted according to the ACS Style guide: Neitzel, A. E.; De Hoe, G. X.; Hillmyer, M.A. Macromolecules 2022, 34, 546. 35

POW

DEPARTMENT OF MATERIALS SCIENCE & ENGINEERING

Combination of three PEs produces promising result until...

No coexisting polyelectrolyte complex phases, instead vesicles with water in the core

DEPARTMENT OF MATERIALS SCIENCE & ENGINEERING

Well...if you can't do it with 3, try it with 4!

.+ 100 f100	Bright field	TAMRA- <i>f</i> ⁺ ₁₀₀	Cy-f ₃₀	Merge	tio0 fi00	Bright field	TAMR
b. f ₃₀ f ₃₀ f					e. <i>f</i> 54 f54 f		
c. $f_{30}^+ f_{30}^- f_{72}^+ f_{72}^-$	Bright field	TAMRA-f ₇₂	Cy-f ₃₀	Merge	f. $f_{54}^+ f_{54}^- f_{72}^+ f_{72}^-$	Bright field	TAMR
d. $f_{30}^+ f_{30}^- f_{54}^+ f_{54}^-$	Bright field	TAMRA- <i>f</i> ⁺ ₅₄	Су- <i>f</i> ₃₀	Merge	g. f ⁺ ₇₂ f ⁻ ₇₂ f ⁺ ₁₀₀ f ⁻ ₁₀₀	Bright field	TAMR

DEPARTMENT OF MATERIALS SCIENCE & ENGINEERING

Salt can be used to selectively dissolve the outer droplet

POWERING

DEPARTMENT OF MATERIALS SCIENCE & ENGINEERING

Specific ion effects are powerful due to differential hydration

Solvation of ammonium-sulfonate greater than solvation of guanidinium-sulfonate

Herbert Wertheim College of Engineering

POWERING

DEPARTMENT OF MATERIALS SCIENCE & ENGINEERING

Neitzel, A. E.; Fang, Y. N.; Yu, B.; Rumyantsev, A. R.; de Pablo, J. J.; Tirrell, M. V. *Macromolecules* **2021**, *54*, 6878–6890.

Agrawal, Karim, Tirrell, and Neitzel. In preparation for publication

ENGINEER TO TRANSFORM THE FUTURE

MaD

DEPARTMENT OF MATERIALS SCIENCE & ENGINEERING

Bachelor

Master

PhD

Postdoc

PI

Thank you for your time and attention

Emeritus Prof

DEPARTMENT OF MATERIALS SCIENCE & ENGINEERING

Skillful synthesis enables systematic studies in polymer physics

PEC phase behavior across broad range of charge densities

Neitzel, A. E.; Fang, Y. N.; Yu, B.; Rumyantsev, A. R.; de Pablo, J. J.; Tirrell, M. V.* *Macromolecules* **2021**, *54*, 6878.

Charge density-based pairing drives PEC multiphase formation

Agrawal, A.; Neitzel, A. E.;* ...; Karim, A.*; Tirrell, M. V.* In preparation.

Scattering Evidence of Charge Correlations in Polyelectrolyte Complexes

Fang, Y. N.; Rumyantsev, A. R.; Neitzel, A. E.; Liang, H.; Tirrell, M. V.;* de Pablo, J. J.* Under Review at Proc. Nat. Ac. Sci.

Our group will use synthesis as a tool to explore how morphology of chargecomplexed polymers can be controlled over several length scales of structure and drive at new solid-state structures

 $G_{--}(q)$ e q [A⁻¹]

Structure of polymer solution \leftrightarrow Polymer solution properties

Scaling relationships: qualitative understanding of universal features of polymer solutions and melts

PECs are semidilute solutions, polymer concentration is above the overlap concentration c*

Pictured as overlapping blobs with correlation length ξ . Chain inside blob unaware of chains outside

Chain conformation scales with solvent quality: $R_g \sim N^{\nu}$, where $\nu = \frac{1}{2}$ for bad, $\frac{1}{2}$ for θ , and $\frac{3}{5}$ for good solvent

Each macromolecule is a chain of blobs following random walk statistics in 3D ("drunken sailor")

Rubinstein, M.; Colby, R. *Polymer Physics*; Oxford University Press: Oxford, 2003. https://polymerdatabase.com/polymer%20physics/BlobModel.html

Structure of polymer solutions is studied using scattering

Surface

Small Angle Scattering (SAS) from neutral, semidilute polymer solutions using X-rays or neutrons

Shape

Size

Ornstein-Zernike form: $G_{tot}(q) = \frac{G_{tot}(q=0)}{1 + (q\xi_E)^{1/\nu}}$ For $q = 1/\xi_E$: $G_{tot}(q) = \frac{G_{tot}(q=0)}{2}$

PECs are structurally similar to semidilute solutions of neutral polymers

Boldon, L.; Laliberte, F.; Liu, L. Nano Reviews 2015, 6, 25661. Spruijt, Leermakers,...Cohen Stuart; Macromolecules 2013.

Positional correlations in the spatial arrangement of *electrostatic* blobs: negative blobs are preferentially surrounded by positive blobs and vice versa

Experimental evidence for charge correlations in PECs still outstanding

Borue and Erukhimovich. Macromolecules 1988, 21, 3240

First experimental evidence of positional charge correlations in polyelectrolyte complex coacervates

Big deal for theorists!

Theory, simulations, and experiment agree

c _{sali}	σ^{-3}
0	0.000
0	0.025
0	0.050
0	0.100
0	0.150

Charge density, polarity, and solvation ability impact salt partitioning Salt partitioning is not universal

POWERING

Quo vadis? I. Electrostatically stabilized microphases

Block copolymers (BCPs) with incompatible A/B blocks assemble into ordered morphologies (microphase separation)

Important in development of battery electrolytes, mesoporous filtration membranes, and drug delivery vehicles

Morphologies are a function of length N, 'incompatibility' χ , and volume fraction ϕ

Phase behavior known for neutral BCPs

Similar phase diagram predicted for oppositely charged "homopolymers"

This theory has never been tested experimentally!

Quo vadis? I. Electrostatically stabilized microphases

microphases

POWERING

DEPARTMENT OF MATERIALS SCIENCE & ENGINEERING

Quo vadis? II. Self-patterning Layer-by-Layer polyelectrolyte assemblies

Self-patterning PEM films

DEPARTMENT OF MATERIALS SCIENCE & ENGINEERING

Quo vadis? III. Functionally graded materials synthesis

Charge correlations between blobs decrease with \uparrow [salt]

PEC viscoelasticity as a function of charge density

complexes in agreement with previous experiments