

Dual-Responsive Nanoparticles Constructed Using Photo and Redox-Responsive Linkages

Yufu Wang

Date: 21st Feb 2024

Supervisors: A/Prof. Georgina Such Dr. Chris Ritchie

Introduction: Nanoparticles for Drug Delivery

Advantages:

- Reducing immunogenicity
- Prolonging circulation times
- Precise targeting

responsive polymer

Dual Stimuli-Responsive Nanoparticles:

- Increase versatility and suitability
- Potential for combination therapies

Introduction: Redox responsive nanoparticle

GSH

Potential building blocks:

Y. Yang, et al. Sci. Adv. 2020, 6, eabc1725

Introduction: Diarylethene

Photochromic materials:

reversible transformation

two isomers having different spectra

induced by photoirradiation

DODT (dithiol monomer)

One-pot polymerization

PEG-cholesterol (stabilizer)

DPS (oxidising agent)

THE UNIVERSITY OF
MELBOURNECharacterisation of poly(disulfide) nanoparticles

• average particle size: 60-70 nm

The polymer peak becomes more and more obvious over time

DTT

THE UNIVERSITY OFKinetic analysisMELBOURNE

10

THE UNIVERSITY OF
MELBOURNESynthesis of DAE-loaded nanoparticles

Core: DAE Thiol One-pot polymerization DPS Shell: H₃C $-CH_3$ H₃C CHa CH₃ H₃C 10 45 DAE: 🔾 ö Thiol : HS 'SH

Characterisation of DAE-loaded nanoparticles

3%DAE

(b)

120

100

80

60

40-

20 -

0

0

5

10

Relative Count Rate (%)

10%DAE

20%DAE

10%DAE

20

15

Time (hrs)

25

30

20%DAE

Photochromic Kinetics Measurement

THE UNIVERSITY OF

Photochromic Kinetics Measurement

HE LINIVERSITY OF

MELBOURNE

- ✓ The one-pot synthesis of dual photo- and redox-responsive DAE nanoparticles was successfully achieved, with varying DAE concentrations.
- ✓ The nanoparticles in this series exhibit tunable redox disassembly, ranging from 100% to 40%, based on the DAE content.
- ✓ They display different photochromic rates under UV irradiation, depending on the amount of DAE incorporated. Notably, the rates were significantly slowed in the nanoparticle form, indicating that the matrix impacts their behavior.

A/Prof. Georgina Such

Dr. Chris Ritchie

Acknowledgements

