Polymers from cellulosic waste:

Direct polymerisation of levoglucosenone using DBU as a catalyst

Mr. Brett Pollard, Dr. Michael G. Gardiner, Prof. Dr. Martin G. Banwell, Prof. Dr. Luke A. Connal

ChemSusChem 2023

38APS Auckland, New Zealand

Levoglucosenone: A Platform for Chemistry

Levoglucosenone

Defined stereochemistry

Reactive Michael acceptor

Kiloton scale

Making iso-LGO – Hydration Reaction

I. Liu et al. Australian Journal of Chemistry, 2022, 75(5), 331-344; 2. Pollard et al. Australian Journal of Chemistry, 2023, 76(11), 797-811.

An Interesting Side Reaction: Dimerisation

I. Shafizadeh et al. Carbohydrate Research, 1982, 100, 303-313; 2. Liu et al. Australian Journal of Chemistry, 2022, 75(5), 331-344.

Considering the Addition Mechanism

Identifying a Suitable Nucleophile: **PBu**₃ Rauhut-Currier PBu_3 Some Polymer Formation (<5%) + The Usual Suspects Ū.

Identifying a Suitable Nucleophile: DBU

Polymer!

14

Probing the Mechanism

Improving Dispersity: Solvent Choice

Solvent	Result
Solvent free	Rapid, poor conversion & control
Cyrene®	Aldol problems
Water	Solidification – rapid side product formation
Acetone	Generates polymer, poor dispersity
Dichloromethane	Best conversion, best dispersity

Optimising Reaction Time & Catalyst Loading

	Entry	Reaction Time (h)	Catalyst Loading (mol%)	Recovery/Conversion (%)	M _n (kDa)	Dispersity (Đ)
ne	a	4	8	85	62	9.9
	b	21	8	100	278	3.9
	С	30	8	84	246	4.2
	d	69	8	73	83	8.4

Time

	Entry	Reaction Time (h)	Catalyst Loading (mol%)	Recovery/Conversion (%)	M _n (Da)	Dispersity (Đ)
Cat. Loading	е	21	8	100	278	3.9
	f	21	4	100	140	3.3
	g	21	2	83	236	2.4
	h	21	I.	81	167	3.0

Characterising poly-Cyrene: A Challenge

FT-IR C=O increase in wavenumber consistent with loss of α,β-alkene

TGA T_{D5%} at 249 °C T_{D50%} >400 °C

Precipitation & Casting from DMSO

Precipitate into Chilled, Poor Solvent

Collect by Filtration, Wash

Functionalisation: Baeyer-Villiger Oxidation

Bonneau, A. A. et al. Green Chem. 2018, 20, 2455-2458.

Poly-2H-HBO: Analysis Shows Transformation

FT-IR Strong –OH stretching band C=O indicative of γ-lactone

^IH NMR Intense signal δ 3.52 repeat unit

Poly-2*H*-HBO: A Thermally Stable Product

Assessing Polymer Morphology

Conclusions

- Atom economic, one-step and high yield polymerisation of LGO
- High molecular weight product with good thermal stability
- Easily scalable
- Scope for functionalisation

Have a chat or contact me at: Brett.Pollard@anu.edu.au

Australian National University

DSC Exotherm at 235 °C Consistent with T_D

DSC Exotherms at 114 °C, 200 °C No clear T_g below decomposition