

Enhancing the Durability of Polymeric Materials via Sequential Infiltration Synthesis Francis McCallum

Durable Electrolysers for a Sustainable Future

Background

What Is SIS?

Improved Durability

- Thermal •
- **Mechanical**
- Chemical •
- *Introducing metal oxides *Minimal sacrifice of form & function
- Microporous Membranes

dimentional continues for

SIS-PES Storage C Loss

© Storage

400

Loss

PES

350

Temperature (°C)

New Candidate for SIS

Poly(2-(methylsulfinyl)ethyl methacrylate) *PMSEMA

How Does it Work?

C=O

150 °C Water

150 °C TMA

130 °C TMA

110 °C TMA

90 °C TMA

70 °C Water

70 °C TMA

45 °C TMA

PMMA x 1/

 $C-O_1$ CH_3-O_3

Characterisation Techniques in SIS

- Observable peak shifts \geq
 - Carbonyl (C=O)

Bioengineering and Nanotechnology

 \succ Pros vs cons

THE UNIVERSITY

F OUEENSLAND

- ✓ Dosage
- Temperature \checkmark
- **Stoichiometric** ×
- Signal ×
- Structure X

In-situ Transmission FTIR

Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, vol. 2, no. 44, 2014, pp. 9416-24

1000

Liquid Cell FTIR

Liquid Cell FTIR

Liquid FTIR

Reversibility of the Adduct

Liquid FTIR

Reversibility of the Adduct

¹H NMR

A Clearer View of Molecular Interactions

¹H NMR DOSY

Diffusion Analysis of TMA Binding

11

Facilitating Phase Separation in PMSEMA-b-PS

Facilitating Phase Separation in PMSEMA-b-PS

Stability of SIS Treated Films

After 200 °C

After 200 °C

Australian Institute for Bioengineering and Nanotechnology

Acknowledgments

Advisory Team Prof Andrew Whittaker Assoc Prof Idriss Blakey Dr Hui Peng Dr Md Daloar Hossain **Special Thanks** Whittaker Group Colleagues

Australian Government

Australian Research Council

ARC Discovery Project Grant (DP180101221)

ANFF

Indigenous HDR Development Grant

QLD

VIC

ACT

THANK YOU!

