

Hierarchically porous polymer monoliths for size separation 38APS Auckland

Laura de Wal 20-02-2024

Hierarchically porous polymer monoliths for size separation

2

Size exclusion chromatography (SEC)

Inert

- Adequate column dimensions
- Accessible pores

macropores: > 50 nm ---- permeability

mesopores : 2 - 50 nm ----- selectivity

micropores : < 2 nm

Free radical RAFT polymerisation^{1,2}

Porous monoliths

- macropores: > 50 nm
- X mesopores : 2 50 nm

Future Industries

Institute

University of

South Australia

A part of Agilent ¹ Aust. J. Che ² Poly. Chem.

¹ Aust. J. Chem., 2005, 58, 379-410. ² Poly. Chem., 2014, 5, 722-732 3

Morphology with different CTA's

University of South Australia

40% monomers, 60% porogens (15% poly(t-BMA)/ 85% dioxane), 1%wt AIBN with respect to monomers, [CTA]:[Initiator] = 2, 60°C, 24h

How can we explain this difference in morphology?³

³ ACS Appl. Polym. Mater. 2023, 5, 7, 5390–5401

Future Industries

Institute

A part of Agilent

University of South Australia

How can we explain this difference in morphology?

A part of Agilent

1. Kinetics

- Rate of polymerisation of crosslinked
 polymer
- No significant difference in kinetics between the polymers with different CTAs.

2. Phase separation⁴

				Condition	$\Delta_{gelpoint}$ phase separation	%S o surface (XPS)	n % S surfac (with	on e	
Fhase separation ≈ gel point						(IIIII)		theore	l lO
Phase separation								theore	
≈ gel point					Δ	3+7	0 19+0 02		it)
	Phase separation	on before gel point	N I		A	512	0.18±0.02	48%	
		NO A NOV			В	18±9	0.12 ± 0.02	27%	
A STATION		50 0 3 tion	Onset of	Gel point	С	19 ± 2	0.19±0.07	28%	
			separation		Control	4	0	-	
Million and March	nu t pri	to Star Patt							
А	В	С							

Future Industries Institute

8

Conclusion

- Kinetics are similar for all CTAs and do not contribute to the different morphologies
- The gelation study can help explain the phase separation for monoliths with different CTAs
- The morphology of the monolith can be tuned by choosing the type of CTA

Future work

- Investigating which monolith conditions give bicontinuous structures
- Introduction of mesopores in bicontinuous structures for stationary phase material for size separation

Acknowledgements

- Many thanks to:
 - Dr. Dario Arrua
 - Dr. Prof. Thorsten Hofe
 - Dr. Prof. Emily Hilder
 - Dr. Ester Lubomirsky
 - Dr. Amin Khodabandeh
 - Fabienne Ludwig
 - Dr. Jasmin Preis
 - Dr. Moritz Susewind
 - Miriam Lossa
 - Pratishtah Sobrun
 - Dr. Chris Desire
 - Microscopy Australia & FII Tech team

A part of **Agilent**

