Polymer Superparamagnetic Iron Oxide Nanorattles

Duc Nguyen¹, Tim Davey² and Brian S Hawkett¹

1 Key Centre for Polymers and Colloids, School of Chemistry and University of Sydney Nano Institute, The University of Sydney, NSW 2006, Australia

2 Dulux Australia, 1970 Princess Highway, Clayton, Victoria 3168, Australia

Research in the KCPC-Hawkett group

Disperse Phase Polymerization and Coatings ARC & DuluxGroup Australia

Recycled HDPE

materials and liquid

waste

NSSN

Visy

Labelmakers Bega/Dairy

Farmers

Battery

technology for

energy storage • Gelion • Nexeon

•

•

•

PEGRAS

Microplastic removal from wastewater

- PEGRAS
- NSSN
- NSW health

Within KCPC we have been doing collaborative and contract research for industry for over 22 years

The Hawkett Group

Explosive Emulsions for the Mining Industry

ARC & Dyno-Nobel Asia Pacific Sterically stabilized nanoparticles for nano medicine

Sirtex Medical Ferronova

Agrochemical

Delivery Systems

Syngenta Crop

Protection

Zeta Therapeutics

Ionic Liquid Ferrofluids for Space Propulsion

AOARD, US Air Force, Michigan Tech and Yale

Nanorattles

- Nanoparticles consist of:
 - A hollow shell encapsulating
 - An (in)organic core
 - With a water/air layer/void separating the shell and the core

TiO₂ polymer nanorattles Journal of Polymer Science Part A: Polymer Chemistry 50 (2), 346-352

Gold polymer nanorattles J. Am. Chem. Soc. 2003, 125, 9, 2384–2385

The University of Sydney

Potential applications

- Paint and coating: enhance opacity of titanium dioxide in paint films, resulting up to 40% pigment saving
- Potential applications:
 - Drug delivery: space between the shell and core can be used to store drugs, especially anti-cancer drugs
 - Catalysis/battery: Adv. Mater.2008,20,3987–4019

Nanorattles in paint film to enhance pigment light scattering

Drug loaded nanorattles

SPION core

- Superparamagnetic iron oxide nanoparticles (SPIONs): display magnetic property only under the influence of magnetic fields
- Iron oxides:
 - Magnetite: Fe₃O₄
 - Maghemite: Fe₂O₃
 - Iron oxides doped with other metal oxides
- They have been used in a number of biomedical applications such as:
 - Cell labeling
 - Hyperthermia
 - Drug delivery
- We wanted to make iron oxide nanorattles:
 - To cover the IP that we launched with Dulux
 - Sirtex (customer at the time) was interested in SPIONs
 - SPIONs are ideal for targeted delivery

SPION nanorattle synthesis via RAFT emulsion polymerisation

SPIONs

- Sirtex iron oxide nanoparticles are 10-50 nm in diameter with strong magnetic property
- TGA: no organic stabilizer

The University of Sydney

Polymer encapsulated SPIONs (before swelling)

- 150 nm on average, 55 nm shell thickness
- Monodisperse and opalescence

SPION polymer nanorattles (TEM)

- 185 nm on average (DLS, 0.004 PDI)
- 40 nm shell thickness
- 50-100 nm voids containing iron oxide particles

SPION polymer nanorattles (SEM)

- Still maintain shell integrity: no broken shells

SPION nanorattles – **TGA** and magnetism

- Contain mostly polymer (89.5wt.%)
- Maintain superparamagnetic property of the original SPIONs

Dr Nguyen Pham: Penetration of Doxorobucine loaded nanorattles into 2D DLD-1 cancer cells and 3D DLD-1 spheroid

DLD-1 monolayer dosed with Dox-NRs (1uM as Dox) for 24h

DLD-1 spheroids were dosed with Dox-NRs (1uM as Dox) for 48h

Conclusions

- Iron oxide polymer nanorattle synthesis by polymer encapsulation of pigment using RAFT
- > 185 nm in size with 50-100 nm voids containing SPIONs
- Monodisperse and superparamagnetic
- Doxorubicine loaded nanorattles could be taken up by cancer cells and penetrate 3D spheroid

Acknowledgments

- A. Professor Brian Hawkett, Prof. Chiara Neto, Prof. Greg Warr
- DuluxGroup Australia and their team: Dr Tim Davey, Dr Olga Paravagna, Dr Priya Subramanian, Dr Ewan Sprong
- Dr Nguyen Pham, Dr Thu Lam, Dr Vien Huynh
- Sirtex and Dr Steve Jones
- > ARC
- > ACMM
- KCPC members