

Biobased & Biocatalysed Covalent Adaptable Networks

Camille Bakkali-Hassani

Covalent Adaptable Networks: A Third Family of Polymer

Thermoplastics

Linear polymer chains Flow upon heating $(T > T_g \text{ or } T_m)$ Dissolve in good solvent

Recyclable & Reshapable Poor chemical resistance & mechanical properties

Science **2011**, 334, 965–968. Science **2002**, *295*, 1698–1702.

Covalent Adaptable Networks (CANs)

Thermosets

Bakelite ®

Crosslinked networks Do not flow nor dissolve (swell in good solvent)

> Not Recyclable & Reshapable Excellent chemical resistance & mechanical properties

Transesterification-based vitrimers

ACS Macro Lett. 2012, 1, 789–792

ACS Macro Lett. 2018, 7, 817-821

Macromol. Rapid Commun. **2016**, 37, 1996–2004 *Macromol. Biosci.* **2002**, 2, 429 – 436

Epoxy-Acid networks: polymerisation/crosslinking mechanism and features

Gelation

 $\overline{f_B}$: average functionality n_i : isomer probability i : isomer functionality

Classical catalyst

organic (imidazole-based, TBD, phosphines) organometallic (Sn-based, Zn-based etc.)

Conditions

bulk (mixture of acid and epoxide) high temperature (130°C-180°C)

From model molecule studies to network build-up

Model molecular reactions: Effect of temperature on epoxy-addition

Label	Catalyst	T (°C)	Reaction time (in h)	¹ H NMR conv. (%)
NC60	none	60	120	2
TL60	Lipase TL	60	120	50
NC80	none	80	72	5
TL80	Lipase TL	80	72	88
NC100	none	100	48 (72)	30 (50)
TL100	Lipase TL	100	48	98
NC120	none	120	10	32
TL120	Lipase TL	120	10	≥ 99
NC140	none	140	4	37
TL140	Lipase TL	140	4	≥ 99

¹H NMR monitoring of epoxy consumption as a function of time

Model molecular reactions: Effect of temperature on epoxy-acid addition

Biomacromolecules, 2021, 22, 4544-4551

Model molecular reactions: Effect of temperature on transesterification

Transesterification only occured at temperature below 100°C

Model molecular reactions: Mechanistic investigation at 100°C

Enzymatic activity (titration of COOH from hydrolysis of triglycerides in emulsion at 50°C)

Kinetic experiments by ¹H NMR at 100°C with various enzymes

TL = Lipase TL

TDL = Thermally Denaturated Lipase (200°C, 3h) BSA = Bovine Serum Albumin

Biomacromolecules, **2021**, 22, 4544-4551

Model molecular reactions : Proposed mechanism

Lipase catalysed polymerisation: A prototype material

Dissolution test in benzyl alcohol (100°C, 3 days)

blank = control material synthesized without lipase

Extracted enzyme from model resin (not crosslinked) : A \approx 270 U.g⁻¹

Lipase catalysed polymerisation: looking for suitable formulation

ACS Macro Lett. 2023, 12, 3, 338-343

Lipase catalysed polymerisation: vitrimer properties

- G₀ increases after each experiments (100°C, 24h)

- $\tau_{(1/e)}$ increases from ~ 4 h to ~ 18 h after 5 days at 100°C

- Similar G₀ increase after each experiments for TBD catalysed material (100°C, 24h) -T (1/e) is stable (~ 18 h)

10⁵

10⁵

enzyme denaturation ??

Lipase catalysed polymerisation: vitrimer properties

ACS Macro Lett. 2023, 12, 3, 338-343

14

1/T (K⁻¹)

0.0030

10⁴

10⁵

Conclusion

Molecular Model reactions

- Suitable conditions for Lipase catalysed epoxyacid networks
- ✓ Mechanism insight (active site or side groups)

Vitrimer synthesis

- Suitable formulations for Lipase catalysed epoxy- acid networks
- Able to relax stress and reprocess multiple times at 100°C
- ✓ Lipase catalyses the exchange reactions

Acknowledgments

Sophie Norvez François Tournilhac Michel Cloitre Jakob Langenbach Q.-A. Poutrel Paolo Edara

Matthieu Gresil

Self-HEaling soft RObotics

All of you for your kind attention !

