

Using pH-responsive PEG cleavage to improve association of cationic hyperbranched polymers with tumours

Thomas Jarrett

Supervisors: Prof Kris Thurecht, Dr Craig Bell, Dr Rhia Stone, Dr Nick Fletcher

Polymers for drug delivery

Sara Zalba ^{a b}, Timo L.M. ten Hagen ^c, Carmen Burgui ^a, María J. Garrido ^{a b} 2 🖂

Review article

Polymers for drug delivery

Polymers for drug delivery

System aim

Synthetic vision

2. Incorporate imaging modality

PDMAEMA vs PEG-DMAEMA

PEG increases polymer bioinertness across all concentrations

PDMAEMA vs PEG-DMAEMA

PEG increases polymer bioinertness across all concentrations

Cellular association – sheddable PEG

Increased lability = increased cellular association How? Extra- or intra-cellular shedding?

Sheddable PEG – biological mechanism?

Sheddable PEG – biological mechanism?

Haemolytic activity: PEGylated material < sheddable PEG < unPEGylated material Haemocompatibility by concentration

Haemolytic activity: PEGylated material < sheddable PEG < unPEGylated material Haemocompatibility by concentration

Conclusions & future direction

Conclusions

- Polymer which increases charge inversely to pH has been synthesised
- % shedded ≠ % charge increase
- Schiff base formation can occur simply by dissolving primary amines in levulinic acid
- Sheddable PEG-PDMAEMA behaviour *in vitro* dictated by linker kinetics
- Charged polymers are well within hemocompatibility limits for *in vivo* work
- Placement of chelators in PDMAEMA core does not inhibit effective radiolabelling

Thank you

