

PVdF based binders for gelled electrodes prepared using a dry process

H. Rouault, B. Amestoy, G. Besnard, J. Salomon J. Abusleme, D. Bascour, M-D. Braida CEA LITEN SYENSQO (ex SOLVAY)

2024, February 18-21 38th Australasian Polymer Symposium

2

Principle of Hybrid Polymer Lithium Battery Technology

- The electrolytic compartment is made of cross-linked structure combining Solvay proprietary polymer and inorganic structure encapsulating an electrolyte in a dense membrane
- Each composite electrode compartment is made of active materials, conductive additive, electrolyte solution and Solvay proprietary polymer.
 2024, 38th Australasian Polymer Symposium, 18-21 February, H. Rouault

Structure of the SOLGAIN[™] gelled electrodes

- \rightarrow The liquid electrolyte is already in the electrodes, trapped inside the composite structure
- → The electrode formulation is the same as the classical ones: the same compounds, the same contents, except the presence of the electrolyte from the beginning and the binder

- High capability for trapping electrolyte with the pores fully filled
- High adhesion to current collector
- High flexibility even at high electrode loading

Building of the gelled electrodes using wet process

- The slurry synthesis is classical, including a supplementary step for the electrolyte addition in acetone media
 - ✓ At the lab scale, validated for various active materials (NMC, Cgr mixture, LFP, LTO...)
 - ✓ At the pre-pilot scale:
 - > prepared in dry room using a standard disperser
 - > Chronology of the addition steps defined to obtain an homogeneous slurry

* R2R coating and calendaring with standard equipment in dry room (-20°C)

- ✓ successive coating for double-sided electrode
- \checkmark no issue of winding-unwinding
- ✓ No issue of electrolyte leakage

Double side anode

2024, 38th Australasian Polymer Symposium, 18-21 February, H. Rouault

Towards a solvent free process

Choice of the manufacturing method

- ✓ A gelled electrode : an homogeneous composite mixture with active material particles (> 90 wt%), conductive additive(s) (a few wt%) and polymer binder (a few wt%), trapping the electrolyte and with efficient electronic contact with the current collector
- No process solvent I only the organic electrolyte (10-15 wt%) will constitute the liquid media
- → To prepare highly viscous paste trapping the electrolyte (~10000 Pa.s at 0.1 s⁻¹)
- → To shape the paste in form of thin layer
- → To deposit the film onto the AI or Cu current collector
 - Kneading of the mixture while the polymer binder swells inside the electrolyte, at moderate temperature to avoid the electrolyte evaporation I extrusion at low temperature using electrolyte with high T_{boiling}
 - then lamination (to adjust the target loading)
 - Finally co-lamination (with the current collector)

Conductive additive

Binder

materia

- In continuous mode, at the industrial scale

A new grade of binder compatible to the solvent free process

Zone 1

Filling are

Zone 2. T2

Zone 3, T3

Flow direction

Preparation of positive gelled electrode – Development of the extrusion step *

- → Twin-screw extruder in dry room
- → Various screw profiles
- → Flat slot die at the outlet
- \rightarrow 4 heating zones \mathbb{P} 4 adjustable temperatures

Extrusion of NMC based electrode formulated with PVDF1

✓ LiNi₀ Mn₀ 2Co₀ 2O₂ (NMC622) / Conductive additive / PVDF1, ✓ 1M LiPF₆ in EC:PC 1:1 + 2 wt% VC

- \checkmark Process temperature \square 110°C, too high for the material stability
- \checkmark Solid content max 278%, too low for the target electrode density
- ✓ Performances in cycling
 ☐ poor compared to the gelled electrode prepared in acetone

PVDF2

Jfunctionalized (for the electrode adhesion on the current collector) Jmore amorphous than PVDF1 J high molecular weight (~1 million) similar to PVDF1 Jflexible PVDF. Tm = 127°C

pouch cells, [2.8 - 4.2V], at RT

Zone 4, T4

Improvement brought by the new binder PVDF 2

Preparation of NMC based electrode formulated with PVDF2

✓ LiNi_{0.6}Mn_{0.2}Co_{0.2}O₂ (NMC622) / Conductive additive / PVDF2,
 ✓ 1M LiPF₆ in EC:PC 1:1 + 2 wt% VC

SC 85% Flectrecorextru

Electrode strip recovered at the extruder outlet

The solvent free process

- → Extrusion, lamination and co-lamination significantly easier with PVDF 2
 - ✓ Lower extrusion temperature \rightarrow 90°C
 - ✓ Solid content max → 85%
 - ✓ Higher NMC ratio \rightarrow 96%
- Close to the target

The NMC based electrode

→ Properties

- ✓ Cohesive and flexible
- ✓ Homogeneous dispersion
- ✓ Can be prepared with high loading (> 4.5 mAh/cm²)
- → Performances in cycling
 - \checkmark significantly better compared to the gelled electrode prepared in acetone

<u>cea</u>

Electrical performances in cycling

- ***** The solvent free process is applicable to various active materials:
 - ✓ Graphite Cgr, Cgr-Si(O_x) based mixture...
 - ✓ NMC grades, LMNO...

Improvement of the performances in cycling of highly loaded gelled electrodes

- ✓ Compared to the first generation of gelled electrodes prepared in acetone
- ✓ Especially at high C-rates

Full gelled NMC/Graphite, LiPF₆ in EC:PC +VC, pouch cells, [2.8 – 4.2V]

→ The paste kneading during extrusion may improve the dispersion of the electrode compounds

2024, 38th Australasian Polymer Symposium, 18-21 February, H. Rouault

Conclusion and perspectives

10

Strong points:

- Feasibility for preparing gelled electrodes without solvent demonstrated
- High ability to trap the electrolyte (favoring by the functionalized PVDF)
- Battery working demonstrated without complementary electrolyte addition
- Better performances at high loading, compared to the first generation of gelled electrodes prepared in acetone

✤ Future actions:

- Process parameters/conditions according to the active material grade
- To develop the manufacturing process for single-side and double-side electrode at pilot scale for industrial implementation
- Solvent free process for the hybrid polymer membrane

Thank you for your attention!

Direction de la Recherche Technologique Liten

FROM RESEARCH TO INDUSTRY

French Alternative Energies and Atomic Energy Commission

Dr Helene Rouault Commissariat à l'énergie atomique et aux énergies alternatives Centre de Grenoble | 17 rue des Martyrs | 38054 GRENOBLE Cedex 09 T: +33 (0)4 38 78 34 66 | helene.rouault@cea.fr

http://www.cea.fr/ http://www-liten.cea.fr Etablissement public à caractère industriel et commercial | RCS Paris B 775 685 019

Thierry BAERT Syensgo Battery Material Platform Program and Account Manager M +32 475 55 42 16 Rue de Ransbeek. 310 B -1120 Brussels – Belaium www.syensqo.com Connect with Solvay:

2024, 38th Australasian Polymer Symposium, 18-21 February, H. Rouault

11