

Polymer Particles for (Bio-)materials:

Controlling Function through Chemistry, Morphology, and Shape

Daniel Klinger

38th APS, Auckland, NZ

Functional polymer nanoparticles for applied (bio-)materials

Micro-/Nanogels are polymeric hydrogel particles

biocompatible carriers in various sizes

tunable loading and release through responsive networks

Needed: Chemical variation and colloidal comparability

state of the art

tuning chemical functionality also changes colloidal features

Needed: Chemical variation and colloidal comparability

state of the art

tuning chemical functionality also changes colloidal features

<u>our work</u>

similar colloidal features allow systematic studies

Network functionalization after particle preparation

<u>Review:</u> Adv. Mater. Interf. 2020

A synthetic platform: All particles are created equal

nanogel libraries with comparable colloidal features

Review: Adv. Mater. Interf. 2020

Two synthetic platforms based on different functionalization reactions

<u>Review:</u> Adv. Mater. Interf. 2020

Well-defined precursor particles through emulsion polymerization

Towards a platform for personalized medicine

network degradability polymer backbone vs. crosslinkers

orthogonal surface "click" functionalization

Amphiphilic Nanogels for Drug Delivery Hydrogel particles with hydrophobic domains

Hydrophobicity of drugs can result in low bioavailability

Micro-/Nanogels are polymeric hydrogel particles

Amphiphilic nanogels (ANG) are versatile new colloidal materials

<u>Review:</u> J. Polym. Sci. 2021

A small library of particles with varying amphiphilicity

Polym. Chem. 2018

Amphiphilic network results in internal hydrophobic domains

Different compartments are loaded with hydrophobic compounds

Predicting LC with Flory-Huggins parameters?

Good correlation when combining one drug with different NGs

SUD I:

IND:

sudan I

indigo

EFV:

LOT:

efavirenz

loteprednol

same drug – different nanogels

interaction of network with cargoes

submitted

Nanocarriers for passive dermal delivery of hydrophobic drugs

Formation of depots in the stratum corneum

Nanocarriers for passive dermal delivery of hydrophobic drugs

Formation of depots in the stratum corneum

Influencing factors:

- Barrier hydration
- Carrier anchoring
- Drug release

Influence of CHOLA content on dermal delivery?

Balancing surface hydrophobicity and network rigidity for efficient delivery

Biomacromolecules 2021

Balancing surface hydrophobicity and network rigidity for efficient delivery

Biomacromolecules 2021

Amphiphilic Nanogels at Liquid Interfaces: Versatile Pickering Emulsions

How does network hydrophilicity determine emulsion type?

phase inversion via preferential swelling of nanogels?

Toluene/water system: Phase inversion due to changing DODA content

Variation of phase inversion point due to different swelling in oil

submitted

Water-in-oil high internal phase emulsions (HIPEs) are accessible

Addressing current threats: Responsive nanogels to fight resistant bacteria

Major killers: β-Lactam resistant bacteria

- Resistance due to excessive and inefficient use of first line β -lactam antibiotics
- Life-threatening infections
- Origin of **multi-resistance**

picture source: Center for Disease Control; www.avalonpharmacy.com; www.gelbe-liste.de

Ciprofloxacin \rightarrow a fluoroquinolone

OH

 \odot

Ciproxin[®] 500 mg

hydrostnickieum manoł

Sitte Packungsbeilege beachten! In 15.35°C in der Orensteachung teo

Ciprofloxacii

Anobiookum

Zupannensetzung Ciprzhoramiert 500 mg vit **Colistin** \rightarrow a polymyxin

effective but severe side-effects

<u>The Design:</u>Cephalosporins (CEPH) as β-lactamase cleavable linkers

Highly selective and efficient **fragmentation** of cephalosporins

Nanogels for delivery of ciprofloxacin

CEPH antibiotics as linker to liberate alternative antibiotics

Incubation with β -lactamase: linker structure controls release kinetics

Triggered cipro release selectively inhibits growth of resistant bacteria

Triggered cipro release selectively inhibits growth of resistant bacteria

in preparation

Striped ellipsoidal nanoparticles Stimuli-responsive shape change for new materials

Ellipsoidal particles as building blocks for new materials

Swelling of striped particles to induce shape change

Morphology is governed by the particle/water interface

Hierarchical structures: striped lamellar ellipsoids

Swelling of striped particles to induce shape change

crosslinking of P2VP domains to prepare hydrogel layers

Selective domain swelling: pH-triggered shape change

Angew. Chem. Int. Ed. 2014

How to include more chemical functionality?

Chem. Mater. 2017

Introducing chemical function during particle preparation is challenging

ACS Macro Lett. 2015, 4, 731

with M. Gallei Uni Saarland

Polym. Chem. 2018, 9, 1638

Post-assembly modifications as versatile approach

Domain-selective seeded polymerizations for highly asymmetric lamellae

ACS Macro Lett. 2022, Angew. Chem. 2022

Domain-selective seeded polymerizations for highly asymmetric lamellae

ACS Macro Lett. 2022, Angew. Chem. 2022

Seeded polymerization with functional monomers

periodic distribution of ferrocene

ACS Macro Lett. 2022, Angew. Chem. 2022

Our aim: Hierarchically structured multifunctional particles

Highlights:

JACS 2013; *Angew.Chem.* 2014; *ACS Macro Lett.* 2015; *Chem. Mater.* 2017; *Macromolecules* 2017; *Polym.Chem.* 2018; *Nat. Mater.* 2019; *ACS Macro Lett.* 2022; *Angew.Chem.* 2022

Functional colloids and nanomaterials

stimuli-responsive nanogels

stimuli-responsive hydrogels

shape anisotropic nanoparticles

functional surfaces & coatings

Thanks to the group, collaborators and funding agencies

Dr. C. López Iglesias A. Markovina R. Cui S. Kanwal

O. Staudhammer T.M.P. Neumann-Tran H. Stauber

W. Rohland

<u>collaborators</u>

- A. Thünemann
- H. Dommisch
- S. Hedtrich
- K. Achazi
- C. Tzschucke

- U. Resch-Genger K. Danker M. Schäfer-Korting A. Haase
- R. v. Klitzing

- M.Weinhart N. Vogel
- L. Isa
- E. Bittl
- J. Rademann

Funding

